【题目】在全面抗击新冠肺炎疫情这一特殊时期,我市教育局提出“停课不停学”的口号,鼓励学生线上学习.某校数学教师为了调查高三学生数学成绩与线上学习时间之间的相关关系,对高三年级随机选取45名学生进行跟踪问卷,其中每周线上学习数学时间不少于5小时的有19人,余下的人中,在检测考试中数学平均成绩不足120分的占
,统计成绩后得到如下
列联表:
分数不少于120分 | 分数不足120分 | 合计 | |
线上学习时间不少于5小时 | 4 | 19 | |
线上学习时间不足5小时 | |||
合计 | 45 |
(1)请完成上面
列联表;并判断是否有99%的把握认为“高三学生的数学成绩与学生线上学习时间有关”;
(2)①按照分层抽样的方法,在上述样本中从分数不少于120分和分数不足120分的两组学生中抽取9名学生,设抽到不足120分且每周线上学习时间不足5小时的人数是
,求
的分布列(概率用组合数算式表示);
②若将频率视为概率,从全校高三该次检测数学成绩不少于120分的学生中随机抽取20人,求这些人中每周线上学习时间不少于5小时的人数的期望和方差.
(下面的临界值表供参考)
| 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(参考公式
其中
)
【答案】(1)填表见解析;有99%的把握认为“高三学生的数学成绩与学生线上学习时间有关”(2)①详见解析②期望
;方差![]()
【解析】
(1)完成列联表,代入数据即可判断;
(2)利用分层抽样可得
的取值,进而得到概率,列出分布列;根据分析知
,计算出期望与方差.
(1)
分数不少于120分 | 分数不足120分 | 合计 | |
线上学习时间不少于5小时 | 15 | 4 | 19 |
线上学习时间不足5小时 | 10 | 16 | 26 |
合计 | 25 | 20 | 45 |
![]()
有99%的把握认为“高三学生的数学成绩与学生线上学习时间有关”.
(2)①由分层抽样知,需要从不足120分的学生中抽取
人,
的可能取值为0,1,2,3,4,
,
,![]()
,
,
所以,
的分布列:
|
|
|
|
|
|
|
|
|
|
|
|
②从全校不少于120分的学生中随机抽取1人,此人每周上线时间不少于5小时的概率为
,设从全校不少于120分的学生中随机抽取20人,这些人中每周线上学习时间不少于5小时的人数为
,则
,
故
,
.
科目:高中数学 来源: 题型:
【题目】已知圆
的圆心为
,点
是圆
内一个定点,点
是圆
上任意一点,线段
的垂直平分线与半径
相交于点
.
(1)求动点
的轨迹
的方程;
(2)给定点
,设直线
不经过点
且与轨迹
相交于
,
两点,以线段
为直径的圆过点
.证明:直线
过定点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)为奇函数,且当x≥0时,f(x)=ex﹣cosx,则不等式f(2x﹣1)+f(x﹣2)>0的解集为( )
A.(﹣∞,1)B.(﹣∞,
)C.(
,+∞)D.(1,+∞)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
:
(
)的右顶点为
.左、右焦点分别为
,
,过点
且垂直于
轴的直线交椭圆于点
(
在第象限),直线
的斜率为
,与
轴交于点
.
(1)求椭圆
的标准方程;
(2)过点
的直线与椭圆交于
、
两点(
、
不与
、
重合),若
,求直线
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,对
∈[0, π],都有
,满足f(x2)=0的实数x有且只有3个,给出下述四个结论:①满足题目条件的实数x0有且只有1个;②满足题目条件的实数x1有且只有1个;③f(x)在
上单调递增;④
的取值范围是
;其中所有正确结论的编号是( )
A.①③B.②④C.①②④D.①③④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】中国诗词大会的播出引发了全民读书热,某学校语文老师在班里开展了一次诗词默写比赛,班里40名学生得分数据的茎叶图如右图,若规定得分不低于85分的学生得到“诗词达人”的称号,低于85分且不低于70分的学生得到“诗词能手”的称号,其他学生得到“诗词爱好者”的称号.根据该次比赛的成绩按照称号的不同进行分层抽样抽选10名学生,则抽选的学生中获得“诗词能手”称号的人数为( )
![]()
A. 6B. 5C. 4D. 2
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知中心在原点,焦点在x轴上的椭圆,离心率
,且经过抛物线
的焦点.若过点
的直线
斜率不等于零
与椭圆交于不同的两点E、
在B、F之间
,
求椭圆的标准方程;
求直线l斜率的取值范围;
若
与
面积之比为
,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在正方体ABCD-A1B1C1D1中,E、F、G分别为AA1、BC、C1D1的中点,现有下面三个结论:①△EFG为正三角形;②异面直线A1G与C1F所成角为60°;③AC∥平面EFG.其中所有正确结论的编号是( )
A.①B.②③C.①②D.①③
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com