精英家教网 > 高中数学 > 题目详情

【题目】在全面抗击新冠肺炎疫情这一特殊时期,我市教育局提出“停课不停学”的口号,鼓励学生线上学习.某校数学教师为了调查高三学生数学成绩与线上学习时间之间的相关关系,对高三年级随机选取45名学生进行跟踪问卷,其中每周线上学习数学时间不少于5小时的有19人,余下的人中,在检测考试中数学平均成绩不足120分的占,统计成绩后得到如下列联表:

分数不少于120

分数不足120

合计

线上学习时间不少于5小时

4

19

线上学习时间不足5小时

合计

45

1)请完成上面列联表;并判断是否有99%的把握认为“高三学生的数学成绩与学生线上学习时间有关”;

2)①按照分层抽样的方法,在上述样本中从分数不少于120分和分数不足120分的两组学生中抽取9名学生,设抽到不足120分且每周线上学习时间不足5小时的人数是,求的分布列(概率用组合数算式表示);

②若将频率视为概率,从全校高三该次检测数学成绩不少于120分的学生中随机抽取20人,求这些人中每周线上学习时间不少于5小时的人数的期望和方差.

(下面的临界值表供参考)

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

(参考公式其中

【答案】1)填表见解析;有99%的把握认为高三学生的数学成绩与学生线上学习时间有关2)①详见解析②期望;方差

【解析】

1)完成列联表,代入数据即可判断;

2)利用分层抽样可得的取值,进而得到概率,列出分布列;根据分析知,计算出期望与方差.

1

分数不少于120

分数不足120

合计

线上学习时间不少于5小时

15

4

19

线上学习时间不足5小时

10

16

26

合计

25

20

45

99%的把握认为高三学生的数学成绩与学生线上学习时间有关”.

2)①由分层抽样知,需要从不足120分的学生中抽取人,

的可能取值为01234

所以,的分布列:

②从全校不少于120分的学生中随机抽取1人,此人每周上线时间不少于5小时的概率为,设从全校不少于120分的学生中随机抽取20人,这些人中每周线上学习时间不少于5小时的人数为,则

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知圆的圆心为,点是圆内一个定点,点是圆上任意一点,线段的垂直平分线与半径相交于点.

1)求动点的轨迹的方程;

2)给定点,设直线不经过点且与轨迹相交于两点,以线段为直径的圆过点.证明:直线过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数fx)为奇函数,且当x≥0时,fx)=excosx,则不等式f2x1+fx2)>0的解集为( )

A.(﹣1B.(﹣C.+∞D.1+∞

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆)的右顶点为.左、右焦点分别为,过点且垂直于轴的直线交椭圆于点在第象限),直线的斜率为,与轴交于点

1)求椭圆的标准方程;

2)过点的直线与椭圆交于两点(不与重合),若,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在中,的中点,.现将沿翻折至,得四棱锥.

1)证明:

2)若,求直线与平面所成角的正切值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,对[0 π],都有,满足f(x2)=0的实数x有且只有3个,给出下述四个结论:①满足题目条件的实数x0有且只有1个;②满足题目条件的实数x1有且只有1个;③f(x)上单调递增;④的取值范围是;其中所有正确结论的编号是(

A.①③B.②④C.①②④D.①③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中国诗词大会的播出引发了全民读书热,某学校语文老师在班里开展了一次诗词默写比赛,班里40名学生得分数据的茎叶图如右图,若规定得分不低于85分的学生得到“诗词达人”的称号,低于85分且不低于70分的学生得到“诗词能手”的称号,其他学生得到“诗词爱好者”的称号.根据该次比赛的成绩按照称号的不同进行分层抽样抽选10名学生,则抽选的学生中获得“诗词能手”称号的人数为(  )

A. 6B. 5C. 4D. 2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知中心在原点,焦点在x轴上的椭圆,离心率,且经过抛物线的焦点.若过点的直线斜率不等于零与椭圆交于不同的两点EBF之间

求椭圆的标准方程;

求直线l斜率的取值范围;

面积之比为,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在正方体ABCDA1B1C1D1中,EFG分别为AA1BCC1D1的中点,现有下面三个结论:①△EFG为正三角形;②异面直线A1GC1F所成角为60°;③AC∥平面EFG.其中所有正确结论的编号是(

A.B.②③C.①②D.①③

查看答案和解析>>

同步练习册答案