分析 利用x+50°=x-10°+60°,化简函数y=3sin(x-10°)+5sin(x+50°),然后利用Asinα+Bcosα化为一个角的一个三角函数的形式,求出函数的最大值.
解答 解:y=3sin(x-10°)+5sin(x+50°)
=3sin(x-10°)+5sin(x-10°+60°)
=3sin(x-10°)+5[sin(x-10°)cos60°+cos(x-10°)sin60°]
=3sin(x-10°)+$\frac{5}{2}$sin(x-10°)+$\frac{5\sqrt{3}}{2}$cos(x-10°)
=$\frac{11}{2}$sin(x-10°)+$\frac{5\sqrt{3}}{2}$cos(x-10°)
=7sin(x+α-10°),其中tanα=$\frac{5\sqrt{3}}{11}$,
所以y=3sin(x-10°)+5sin(x+50°)的最大值为:7.
故答案为:7.
点评 本题考查三角函数的最值,计算能力,角的变换是一个技巧:x+50°=x-10°+60°;同时利用Asinα+Bcosα化为一个角的一个三角函数的形式,三角函数最值求法是常考点.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -1 | B. | -$\frac{1}{2}$ | C. | $\frac{1}{2}$ | D. | 1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3}{20}$ | B. | $\frac{42}{135}$ | C. | $\frac{47}{250}$ | D. | 以上都不对 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com