精英家教网 > 高中数学 > 题目详情
2.甲、乙、丙三位学生用计算机联网学习数学,每天上课后独立完成6道自我检测题,甲及格的概率为$\frac{4}{5}$,乙及格的概率为$\frac{3}{5}$,丙及格的概率为$\frac{7}{10}$,三人各答一次,则三人中只有一人及格的概率为(  )
A.$\frac{3}{20}$B.$\frac{42}{135}$C.$\frac{47}{250}$D.以上都不对

分析 分别求出仅甲及格的概率、仅乙及格的概率、仅丙及格的概率,再把这3个概率值相加,即得所求.

解答 解:仅甲及格的概率为 $\frac{4}{5}$×$\frac{2}{5}$×$\frac{3}{10}$=$\frac{24}{250}$,仅乙及格的概率为$\frac{1}{5}$×$\frac{3}{5}$×$\frac{3}{10}$=$\frac{9}{250}$,
仅丙及格的概率为$\frac{1}{5}$×$\frac{2}{5}$×$\frac{7}{10}$=$\frac{14}{250}$,
故三人各答一次,则三人中只有一人及格的概率为 $\frac{24}{250}$+$\frac{9}{250}$+$\frac{14}{250}$=$\frac{47}{250}$,
故选:C.

点评 本题主要考查相互独立事件的概率乘法公式,所求的事件的概率与它的对立事件的概率之间的关系,体现了分类讨论的数学思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.设函数f(x)=$\left\{\begin{array}{l}{{x}^{2},|x|≥1}\\{x,|x|<1}\end{array}\right.$,若f(g(x))的值域是[0,+∞),则函数y=g(x)的值域为[0,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在△ABC中,角A,B,C对边分别是a,b,c,已知3cos2C-10cos(A+B)-1=0,若c=1,cosA+cosB=$\frac{10}{9}$,求边a.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.函数y=3sin(x-10°)+5sin(x+50°)的最大值是7.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在平行四边形OABC中,已知过点C的直线与线段OA、OB分别相交于点M、N,若$\overrightarrow{OM}$=sinθ•$\overrightarrow{OA}$,$\overrightarrow{ON}$=cosθ•$\overrightarrow{OB}$,其中θ∈(0,$\frac{π}{2}$),试求sinθ•cosθ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知向量$\overrightarrow{a}$=(cosx,-$\frac{1}{2}$),$\overrightarrow{b}$=(-$\sqrt{3}$sinx,cos2x),x∈R,设函数f(x)=$\overrightarrow{a}•\overrightarrow{b}$.
(1)求f(x)的最小正周期;
(2)求函数f(x)在[0,$\frac{π}{2}$]上最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.下图几何体是由选项中的哪个平面图旋转而得到的(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.(1)解不等式2|x-2|-|x+1|>3;
(2)设正数a,b,c满足abc=a+b+c,求证:ab+4bc+9ac≥36,并给出等号成立条件.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在△ABC中,若∠B=30°,AB=2$\sqrt{3}$,AC=2,则△ABC的面积为(  )
A.$\sqrt{3}$B.2$\sqrt{3}$或$\sqrt{2}$C.2$\sqrt{3}$或$\sqrt{3}$D.2$\sqrt{3}$

查看答案和解析>>

同步练习册答案