| A. | 外心 | B. | 内心 | C. | 垂心 | D. | 重心 |
分析 可取AB的中点为E,从而由${\overrightarrow{CA}}^{2}-{\overrightarrow{CB}}^{2}+2\overrightarrow{AB}•\overrightarrow{CD}=0$即可得出$\overrightarrow{AB}•\overrightarrow{ED}=0$,从而得出ED⊥AB,这样便可得出点D的轨迹为AB的垂直平分线,而△ABC的外心在AB的垂直平分线上,从而得出点D的轨迹过△ABC的外心.
解答 解:如图,取AB中点E,则:![]()
${\overrightarrow{CA}}^{2}-{\overrightarrow{CB}}^{2}+2\overrightarrow{AB}•\overrightarrow{CD}$
=$(\overrightarrow{CA}+\overrightarrow{CB})•(\overrightarrow{CA}-\overrightarrow{CB})+2\overrightarrow{AB}•\overrightarrow{CD}$
=$2\overrightarrow{CE}•\overrightarrow{BA}+2\overrightarrow{AB}•\overrightarrow{CD}$
=$2\overrightarrow{AB}•(\overrightarrow{CD}-\overrightarrow{CE})$
=$2\overrightarrow{AB}•\overrightarrow{ED}$
=0;
∴AB⊥ED;
即点D在AB的垂直平分线上;
∴点D的轨迹一定通过△ABC的外心.
故选A.
点评 考查向量数量积的运算,向量加法的平行四边形法则,以及向量减法的几何意义,三角形外心的定义,向量垂直的充要条件.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 38% | B. | 76% | C. | 90% | D. | 95% |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4 | B. | 2$\sqrt{2}$ | C. | 2 | D. | $\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | $\frac{3}{2}$ | C. | $\frac{\sqrt{2}}{2}$ | D. | $\frac{3\sqrt{2}}{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com