精英家教网 > 高中数学 > 题目详情
7.设函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+1,x≤1}\\{{x}^{2}+x-2,x>1}\end{array}\right.$,则f(0)=1,f[f(-1)]=4.

分析 利用分段函数,直接求解函数值即可.

解答 解:函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+1,x≤1}\\{{x}^{2}+x-2,x>1}\end{array}\right.$,则f(0)=0+1=1;
f[f(-1)]=f[1+1]=f(2)=4+2-2=4.
故答案为:1;4.

点评 本题考查分段函数的解析式的应用,函数值的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.已知$cos(\frac{π}{4}+x)=\frac{1}{4}$,则sin2x的值为$\frac{7}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.对于函数f(x),若在定义域内存在实数x满足f(-x)=-f(x),则称f(x)为“局部奇函数”,若已知f(x)=x2-2mx+m2-4为定义域R上的“局部奇函数”,则实数m的取值范围是(  )
A.[0,2]B.(-2,2)C.[-2,2]D.[-2,0]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.用列举法表示集合D={(x,y)|y=-x2+8,x∈N,y∈N}为{(0,8),(1,7),(2,4)}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.执行如图所示的程序框图,若将判断框内“S>100”改为关于n的不等式“n≥n0”且要求输出的结果不变,则正整数n0的值6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在等差数列{an}中,a3=-6,a7=a5+4,则a1等于(  )
A.-10B.-2C.2D.10

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知平面向量$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$ 满足|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=4,$\overrightarrow{c}$=$\overrightarrow{a}$+$\overrightarrow{b}$,$\overrightarrow{c}$⊥$\overrightarrow{a}$,则$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为(  )
A.30°B.60°C.90°D.120°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知椭圆$\frac{{y}^{2}}{25}$+$\frac{{x}^{2}}{9}$=1以及下面三个函数①f(x)=x;②f(x)=sinx;③f(x)=lgx.其中图象能等分该椭圆面积的函数有(  )
A.0个B.1个C.2个D.3个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.△ABC中,若动点D满足${\overrightarrow{CA}$2-${\overrightarrow{CB}$2+2$\overrightarrow{AB}$•$\overrightarrow{CD}$=0,则点D的轨迹一定通过△ABC的(  )
A.外心B.内心C.垂心D.重心

查看答案和解析>>

同步练习册答案