分析 利用向量平行四边形法则,先求出$\overrightarrow{OC}$,进而得到C的坐标,结合点C在直线上建立方程进行求解即可.
解答 解:以OA、OB为邻边的平行四边形OACB的顶点是C,
则$\overrightarrow{OC}$=$\overrightarrow{OA}$+$\overrightarrow{OB}$=(log2(m2+3m-8),log2(2m-2))+(1,0)=(1+log2(m2+3m-8),log2(2m-2))=(log2(2m2+6m-16),log2(2m-2)),
即C(log2(2m2+6m-16),log2(2m-2)),
∵顶点C在函数y=$\frac{1}{2}$x的图象上,
∴log2(2m-2)=$\frac{1}{2}$log2(2m2+6m-16),
即2log2(2m-2)=log2(2m2+6m-16),
即(2m-2)2=2m2+6m-16,
即m2-7m+10=0
得m=2或m=5,
检验知m=2或m=5满足条件,
故答案为:2或5.
点评 本题主要考查向量基本运算以及对数方程和一元二次方程的求解和应用,根据条件求出C的坐标是解决本题的关键.考查学生的计算能力.
科目:高中数学 来源: 题型:选择题
| A. | c<b<a | B. | c<a<b | C. | a<c<b | D. | a<b<c |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(1)>f(-2)>f(3) | B. | f(-2)>f(1)>f(3) | C. | f(1)>f(3)>f(-2) | D. | f(1)<f(-2)<f(3) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y=x | B. | y=x+1 | C. | y=2x+1 | D. | y=2x-1 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com