精英家教网 > 高中数学 > 题目详情
18.已知位置向量$\overrightarrow{OA}$=(log2(m2+3m-8),log2(2m-2)),$\overrightarrow{OB}$=(1,0),若以OA、OB为邻边的平行四边形OACB的顶点C在函数y=$\frac{1}{2}$x的图象上,则实数m=2或5.

分析 利用向量平行四边形法则,先求出$\overrightarrow{OC}$,进而得到C的坐标,结合点C在直线上建立方程进行求解即可.

解答 解:以OA、OB为邻边的平行四边形OACB的顶点是C,
则$\overrightarrow{OC}$=$\overrightarrow{OA}$+$\overrightarrow{OB}$=(log2(m2+3m-8),log2(2m-2))+(1,0)=(1+log2(m2+3m-8),log2(2m-2))=(log2(2m2+6m-16),log2(2m-2)),
即C(log2(2m2+6m-16),log2(2m-2)),
∵顶点C在函数y=$\frac{1}{2}$x的图象上,
∴log2(2m-2)=$\frac{1}{2}$log2(2m2+6m-16),
即2log2(2m-2)=log2(2m2+6m-16),
即(2m-2)2=2m2+6m-16,
即m2-7m+10=0
得m=2或m=5,
检验知m=2或m=5满足条件,
故答案为:2或5.

点评 本题主要考查向量基本运算以及对数方程和一元二次方程的求解和应用,根据条件求出C的坐标是解决本题的关键.考查学生的计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.若曲线y=1+logax(a>0且a≠1)在点(1,1)处的切线经过坐标原点,则a=e.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知函数f(x)是定义在R上的奇函数,其导函数为f'(x),且x<0时2f(x)+xf'(x)<0恒成立,则a=f(1),b=2014f($\sqrt{2014}$),c=2015f($\sqrt{2015}$)的大小关系为(  )
A.c<b<aB.c<a<bC.a<c<bD.a<b<c

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.$\frac{\sqrt{3}tan12°-3}{sin12°(4cos{\;}^{2}12°-2)}$=-4$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知f(x)的定义在R上的偶函数,且在区间(-∞,0]上为减函数,则f(1)、f(-2)、f(3)的大小关系是(  )
A.f(1)>f(-2)>f(3)B.f(-2)>f(1)>f(3)C.f(1)>f(3)>f(-2)D.f(1)<f(-2)<f(3)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.定义在D上的函数f(x),如果满足:对任意x∈D,存在常数M≥0,都有|f(x)|≤M成立,则称f(x)是D上的有界函数,其中M称为函数f(x)的一个上界.已知函数f(x)=1+a($\frac{1}{2}$)x+($\frac{1}{4}$)x,若函数f(x)在[-2,1]上是以3为上界的有界函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知等差数列{an},且a9=20,则S17=(  )
A.170B.200C.340D.360

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知以F为焦点的抛物线y2=2px(p>0)的准线方程为x=-1,A、B、C为该抛物线上不同的三点,且点B在x轴的下方,若|${\overrightarrow{FA}}$|、|${\overrightarrow{FB}}$|、|${\overrightarrow{FC}}$|成等差数列,且$\overrightarrow{FA}$+$\overrightarrow{FB}$+$\overrightarrow{FC}$=0,则直线AC的方程为(  )
A.y=xB.y=x+1C.y=2x+1D.y=2x-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知椭圆C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的右焦点为F,左顶点为A,过点F作倾斜角为120°的直线l交椭圆的上半部分于点P,此时AP垂直PF,则椭圆C的离心率是$\frac{\sqrt{7}-1}{6}$.

查看答案和解析>>

同步练习册答案