精英家教网 > 高中数学 > 题目详情
13.函数y=x-sinx在[${\frac{π}{2}$,$\frac{3π}{2}}$]上的最大值是(  )
A.$\frac{π}{2}$-1B.$\frac{3π}{2}$+1C.$\frac{π}{2}$-$\frac{{\sqrt{2}}}{2}$D.$\frac{3π}{2}$

分析 可先利用导数判断函数的单调性,再利用单调性求最值.

解答 解:∵y′=1-cosx≥0,在[${\frac{π}{2}$,$\frac{3π}{2}}$]恒成立,
∴y=x-sinx在[${\frac{π}{2}$,$\frac{3π}{2}}$]上是增函数,
∴x=$\frac{3π}{2}$时,ymax=$\frac{3π}{2}$+1.
故选:B.

点评 本题考查函数单调性的应用:利用单调性求函数在闭区间上的最值,属基本题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知tanα=3,求值:
(Ⅰ)$\frac{cosα-sinα}{cosα+sinα}$;
(Ⅱ)sinα-cosα.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设函数f(x)=$\left\{\begin{array}{l}{{x}^{2},x≤0}\\{lg(x+1),x>0}\end{array}\right.$,则f(f(-3))=(  )
A.-1B.0C.1D.lg2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知等差数列{an}的前n项和为Sn,若$\overrightarrow{OB}$=a4$\overrightarrow{OA}$+a2013$\overrightarrow{OC}$,且A,B,C三点共线(O为该直线外一点),则S2016=1008.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.在递减数列{an}中,an=-2n2+λn,求实数λ的取值范围是(  )
A.(-∞,2)B.(-∞,3)C.(-∞,4)D.(-∞,6)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.“c=6”是“函数f(x)=x(x-c)2在x=2处有极大值”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,在四棱锥P-ABCD中,底面ABCD是菱形,且∠ABC=120°,点E是棱PC的中点,平面ABE与棱PD交于点F.
(1)求证:AB∥EF;
(2)若PA=PD=AD=2,且平面PAD⊥平面ABCD,
求①二面角E-AF-D的二面角的余弦值;
   ②在线段PC上是否存在一点H,使得直线BH与平面AEF所成角等于60°,若存在,确定H的位置,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若集合A={x|-1≤x≤3},B={x|x>2},则A∩B=(  )
A.{x|2<x≤3}B.{x|x≥-1}C.{x|2≤x<3}D.{x|x>2}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设A={(x,y)|y=2x+3},B={(x,y)|y=x+1},则A∩B={(-2,-1)}.

查看答案和解析>>

同步练习册答案