精英家教网 > 高中数学 > 题目详情
4.设函数f(x)=$\left\{\begin{array}{l}{{x}^{2},x≤0}\\{lg(x+1),x>0}\end{array}\right.$,则f(f(-3))=(  )
A.-1B.0C.1D.lg2

分析 根据函数的解析式求出f(-3)的值,从而求出f(f(-3))的值即可.

解答 解:∵f(x)=$\left\{\begin{array}{l}{{x}^{2},x≤0}\\{lg(x+1),x>0}\end{array}\right.$,
∴f(-3)=9,∴f(f(-3))=f(9)=lg10=1,
故选:C.

点评 本题考查了函数求值问题,考查导数的运算,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.在△ABC中,已知A=30°,B=45°,a=1,则b=(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.$\frac{\sqrt{2}}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.如图,在正方体ABCD-A1B1C1D1中,AB=1,DD1中点为Q,过A、Q、B1三点的截面面积为$\frac{9}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.设函数f(x)=cos(2x+$\frac{π}{3}$),有以下结论:
①函数f(x)的最小正周期是π;     ②函数f(x)在区间[$\frac{π}{3}$,$\frac{5π}{6}$]上单调递增;
③函数f(x)在区间[$\frac{π}{6}$,$\frac{2π}{3}$]上的值域为[-$\frac{1}{2}$,$\frac{1}{2}$]
④点(-$\frac{5}{12}$π,0)是函数f(x)图象的一个对称中心;
⑤将函数f(x)的图象向右平移$\frac{π}{6}$个单位后,对应的函数是偶函数.
其中所有正确结论的序号是①②④⑤.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知△ABC的三个内角A,B,C成等差数列,求证:对应三边a,b,c满足$\frac{1}{a+b}$+$\frac{1}{b+c}$=$\frac{3}{a+b+c}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.在平面直角坐标系xOy中,已知曲线C1:$\left\{\begin{array}{l}{x=1-t}\\{y=4-2t}\end{array}\right.$(t为参数)与曲线C2:$\left\{\begin{array}{l}{x=2+rcosθ}\\{y=1+rsinθ}\end{array}\right.$ (θ为参数,r>0)有一个公共点在y轴上,则r=(  )
A.$\sqrt{5}$B.2C.$\sqrt{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,AB是圆O的直径,AC是弦,直线EF和圆O相切于点C.AD⊥EF,垂足为D,直线EF交BA的延长线于点F.
(Ⅰ)求证:∠BAC=∠DAC;
(Ⅱ)若OB=2,AD=1,求证:$\frac{BC}{BF}$=$\frac{AF}{BC}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.函数y=x-sinx在[${\frac{π}{2}$,$\frac{3π}{2}}$]上的最大值是(  )
A.$\frac{π}{2}$-1B.$\frac{3π}{2}$+1C.$\frac{π}{2}$-$\frac{{\sqrt{2}}}{2}$D.$\frac{3π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设函数f(x)=|2x+1|+|x-a|,a∈R.
(Ⅰ)当a=2时,求不等式f(x)<4的解集.
(Ⅱ)当a<$-\frac{1}{2}$时,对于?x∈(-∞,-$\frac{1}{2}$],都有f(x)+x≥3成立,求a的取值范围.

查看答案和解析>>

同步练习册答案