精英家教网 > 高中数学 > 题目详情
15.如图,在正方体ABCD-A1B1C1D1中,AB=1,DD1中点为Q,过A、Q、B1三点的截面面积为$\frac{9}{8}$.

分析 根据题意,画出图形,得出过A、Q、B1三点的截面为等腰梯形,结合图中数据即可求出截面的面积.

解答 解:如图所示,
取C1D1的中点P,连接PQ、PB1、AB1和AQ,则四边形AB1PQ是过A、Q、B1三点的截面;
∵PQ∥C1D,且PQ=$\frac{1}{2}$C1D,
∴PQ∥AB1
∴四边形AB1PQ是梯形;
∵AB=1,
∴AB1=$\sqrt{2}$,PQ=$\frac{\sqrt{2}}{2}$;
且梯形的高为$\sqrt{{1}^{2}{+(\frac{1}{2})}^{2}{-(\frac{1}{2}×\frac{1}{2}\sqrt{2})}^{2}}$=$\frac{3}{2\sqrt{2}}$,
∴截面面积为$\frac{1}{2}$×($\frac{\sqrt{2}}{2}$+$\sqrt{2}$)×$\frac{3}{2\sqrt{2}}$=$\frac{9}{8}$.
故答案为:$\frac{9}{8}$.

点评 本题考查了空间几何体中的线、面之间的位置关系的应用问题,是综合性题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.已知 a1=3,a2=6,且 an+2=an+1-an,则a2011=(  )
A.3B.-3C.6D.-6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.函数y=log0.2(x2-6x+5)的递增区间是(-∞,1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知tanα=3,求值:
(Ⅰ)$\frac{cosα-sinα}{cosα+sinα}$;
(Ⅱ)sinα-cosα.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若a是函数f(x)=3x-log${\;}_{\frac{1}{3}}$x的零点,且f(b)<0,则(  )
A.0<b<aB.0<a<bC.a=bD.a≤b

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.计算:
(1)i(2-i)(3+i)
(2)设复数z满足z+|$\overrightarrow{z}$|=2+i,求z的值
(3)$\frac{(\sqrt{2}+\sqrt{2}i)^{2}(4+5i)}{(5-4i)(1-i)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在几何体ABCDE中,∠BAC=$\frac{π}{2}$,DC⊥平面ABC,EB⊥平面ABCF是BC的中点,AB=AC=BE=2,CD=1.求证:
(1)DC∥平面ABE;
(2)AF⊥平面BCDE;
(3)求二面角D-AF-E的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设函数f(x)=$\left\{\begin{array}{l}{{x}^{2},x≤0}\\{lg(x+1),x>0}\end{array}\right.$,则f(f(-3))=(  )
A.-1B.0C.1D.lg2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,在四棱锥P-ABCD中,底面ABCD是菱形,且∠ABC=120°,点E是棱PC的中点,平面ABE与棱PD交于点F.
(1)求证:AB∥EF;
(2)若PA=PD=AD=2,且平面PAD⊥平面ABCD,
求①二面角E-AF-D的二面角的余弦值;
   ②在线段PC上是否存在一点H,使得直线BH与平面AEF所成角等于60°,若存在,确定H的位置,若不存在,说明理由.

查看答案和解析>>

同步练习册答案