精英家教网 > 高中数学 > 题目详情
19.在△ABC中,角A,B,C的对边分别为a,b,c,2cosC(acosB+bcosA)=c.
(1)求C;
(2)若c=$\sqrt{7}$,a+b=5,求△ABC的面积.

分析 (1)由已知及正弦定理,两角和的正弦函数公式,三角形内角和定理,诱导公式可得2sinCcosC=sinC,
可得cosC=$\frac{1}{2}$,即可得解C的值.
(2)由已知及余弦定理得a2+b2-ab=7,由a+b=5,得a2+b2+2ab=25,联立解得ab的值,进而利用三角形面积公式即可计算得解.

解答 (本题满分为12分)
解:(1)由已知及正弦定理得,2cosC(sinAcosB+sinBcosA)=sinC,
即2cosCsin(A+B)=sinC.
故2sinCcosC=sinC,
可得cosC=$\frac{1}{2}$,
所以C=$\frac{π}{3}$.    …(6分)
(2)由已知及(1)得:在△ABC中,C=$\frac{π}{3}$,$c=\sqrt{7}$,
所以由余弦定理得a2+b2-2abcosC=7.
即${a^2}+{b^2}-2abcos\frac{π}{3}={a^2}+{b^2}-ab=7$,①…(8分)
a+b=5得a2+b2+2ab=25,②
由①②得ab=6,…(10分)
所以$S=\frac{1}{2}absinC=\frac{{3\sqrt{3}}}{2}$.
即△ABC的面积为$\frac{{3\sqrt{3}}}{2}$.,…(12分)

点评 本题主要考查了正弦定理,两角和的正弦函数公式,三角形内角和定理,诱导公式,余弦定理,三角形面积公式在解三角形中的应用,考查了计算能力和转化思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.如图所示,已知四棱锥P-ABCD中,底面ABCD为菱形,PA⊥平面ABCD,∠ABC=60°,E,F分别是线段BC,PC的中点
(1)证明:AE⊥PD
(2)若H为PD上的动点,EH与平面PAD所成最大角的正切值为$\sqrt{3}$,求二面角E-AF-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知p:-1<x<0,q:m-1<x<m+1,若p是q的充分条件,则m的取值范围是[-1,0].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知a∈R,“2a≥2”是|a|≥1的(  )
A.必要不充分条件B.充分不必要条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.等差数列{an}的前n项和为Sn,若S10=80,a4=5,则a13=(  )
A.19B.21C.23D.25

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知数列{an}的首项为1,前n项和Sn与an之间满足an=$\frac{2{S}_{n}^{2}}{{2S}_{n}-1}$(n≥2,n∈N*
(1)求证:数列{$\frac{1}{{S}_{n}}$}是等差数列;
(2)求数列{an}的通项公式;
(3)设存在正整数k,使(1+S1)(1+S1)…(1+Sn)≥k$\sqrt{2n+1}$对于一切n∈N*都成立,求k的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.在正方体ABCD-A1B1C1D1中,O为上底面A1B1C1D1的中心,则AO与B1C所成角的余弦值为:$\frac{\sqrt{3}}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知函数f(x)=$\left\{\begin{array}{l}{{3}^{x}-{x}^{2},x≥0}\\{f(x+2),x<0}\end{array}\right.$,则f(-9)=2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.数列1$\frac{1}{2}$,3$\frac{1}{4}$,5$\frac{1}{8}$,7$\frac{1}{16}$,…,(2n-1)+$\frac{1}{{2}^{n}}$,…的前n项和Sn的值等于n2+1-$\frac{1}{{2}^{n}}$.

查看答案和解析>>

同步练习册答案