精英家教网 > 高中数学 > 题目详情
给出一个正五棱柱.
(Ⅰ)用3种颜色给其10个顶点染色,要求各侧棱的两个端点不同色,有几种染色方案?
(Ⅱ)以其10个顶点为顶点的四面体共有几个?
考点:排列、组合及简单计数问题
专题:应用题,排列组合
分析:(1)利用间接法求解即可;
(2)从一个底面找3个点,另一底面找1个;从一底面找两个点,另一底面找两个点,除去4个点同面的20种情况,可得结论.
解答: 解:(1)35-25=7776
(2)从一个底面找3个点,另一底面找1个,两个底面共2
C
3
5
C
1
5
=100个;
从一底面找两个点,另一底面找两个点,除去4个点同面的20种情况,共5
C
2
5
C
2
5
-20=80种以上,
故共180种.
点评:本题考查排列、组合的综合运用,是典型的涂色问题;解决此类问题,一般要先定一点或面,进而对其他的点面分情况讨论.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}的前n项和为Sn,a1=1,且3an+1+2Sn=3
(1)求数列{an}的通项公式;
(2)对任意正整数n,是否存在k∈R,使得Sn≥k恒成立?若存在,求是实数k的最大值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}的通项公式为an=20-3n.
(1)证明数列{an}是等差数列;
(2)求{|an|}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

在一张画有直角坐标系的纸片中,作以点M(-1,0)为圆心,半径为2
2
的圆,折叠纸片使圆周上的某一个点P恰好与定点N(1,0)重合,连接PM与折痕交于点Q,反复这样折叠得到动点Q的集合.
(Ⅰ)求动点Q的轨迹E的方程;
(Ⅱ)过直线x=2上的点T向圆O:x2+y2=2作两条切线,切点分别为A,B,若直线AB与(Ⅰ)中的轨迹E相交于C,D两点,求
|AB|
|CD|
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设无穷等比数列{an}的公比为q,且an>0(n∈N*),[an]表示不超过实数an的最大整数(如[2.5]=2),记bn=[an],数列{an}的前n项和为Sn,数列{bn}的前n项和为Tn
(Ⅰ)若a1=14,q=
1
2
,求T3
(Ⅱ)证明:Sn=Tn(n=1,2,3,…)的充分必要条件为an∈N*
(Ⅲ)若对于任意不超过2014的正整数n,都有Tn=2n+1,证明:(
2
3
 
1
2012
<q<1.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
=(cosα,sinα),
b
=(cosβ,sinβ)且α-β∈(-
π
2
,0),
(Ⅰ)若
a
b
=
3
2
,求α-β的值;
(Ⅱ)若|
a
-
b
|=
10
5
且α=
π
3
,求sinβ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

某校随机抽取某次高三数学模拟考试甲、乙两班各10名同学的客观题成绩(满分60分),统计后获得成绩数据的茎叶图(以十位数字为茎,个位数字为叶),如图所示:
(Ⅰ)分别计算两组数据的平均数,并比较哪个班级的客观题平均成绩更好;
(Ⅱ)从这两组数据各取两个数据,求其中至少有2个满分(60分)的概率;
(Ⅲ)规定客观题成绩不低于55分为“优秀客观卷”,以这20人的样本数据来估计此次高三数学模拟的总体数据,若从总体中任选4人,记X表示抽到“优秀客观卷”的学生人数,求X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

对于在区间[a,b]上有意义的两个函数f(x)与g(x),如果对于任意x∈[a,b],均有|f(x)-g(x)|≤1,则称f(x)与g(x)在[a,b]上是接近的.若函数y=x2-3x+2与函数y=2x-3在区间[a,b]上非常接近,则该区间可以是
 
.(写出一个符合条件的区间即可)

查看答案和解析>>

科目:高中数学 来源: 题型:

等比数列{an}的各项均为正数,a2=8,且2a4,a3,4a5成等差数列,则{an}的前5项和为
 

查看答案和解析>>

同步练习册答案