精英家教网 > 高中数学 > 题目详情

已知F1、F2分别是椭圆的左、右焦点,曲线C是以坐标原点为顶点,以F2为焦点的抛物线,自点F1引直线交曲线C于P、Q两个不同的点,点P关于x轴对称的点记为M,设

(1)写出曲线C的方程;

(2)若,试用λ表示u;

(3)若λ∈[2,3],求|PQ|的取值范围.

答案:
解析:

  (1)抛物线的方程是y2=4x 2分

  (2)设P(x1,y1),Q(x2,y2),M(x1,-y1)

  ∵,∴

  ∴y12=λ2y22,又y12=4x1,y22=4x2

  ∴x1=λ2x2代入①得λ2x2+1=λx2+λ

  ∴λx2(λ-1)=λ-1,∵λ≠1 ∴ 5分

  则=(x1―1,―y1)=(λ―1,―λy2)=―λ(―1,y2)

  =―λ(x2―1,y2)=-λ

  即,故u=-λ 8分

  (3)由③、④知x1x2=1,∴y12y22=16x1x2=16,又y1y2>0,

  ∴y1y2=4 10分

  ∴|PQ|2=(x1-x2)2+(y1-y2)2=x12+x22+y12+y22-2(x1x2+y1y2)

  =λ2+4(λ+)-10=(λ+)2+4(λ+)-12

  =(λ++2)2-16 12分

  又2≤λ≤3,∴≤λ+

  ∴≤|PQ|2

  所以≤|PQ|≤ 14分


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•湖南)已知F1,F2分别是椭圆E:
x25
+y2=1
的左、右焦点F1,F2关于直线x+y-2=0的对称点是圆C的一条直径的两个端点.
(Ⅰ)求圆C的方程;
(Ⅱ)设过点F2的直线l被椭圆E和圆C所截得的弦长分别为a,b.当ab最大时,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•青岛二模)已知F1、F2分别是双曲线C:
x2
a2
-
y2
b2
=1
(a>0,b>0)的左、右焦点,P为双曲线右支上的一点,
PF2
F1F2
,且|
PF1
|=
2
|
PF2
|
,则双曲线的离心率为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F1,F2分别是双曲线
x2
a2
-
y2
b2
=1 (a>0, b>0)
的左、右焦点,过点F2与双曲线的一条渐近线平行的直线交双曲线另一条渐近线于点M,若点M在以线段F1F2为直径的圆外,则双曲线离心率的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知F1,F2分别是椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦点,且椭圆C的离心率e=
1
2
,F1也是抛物线C1:y2=-4x的焦点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点F2的直线l交椭圆C于D,E两点,且2
DF2
=
F2E
,点E关于x轴的对称点为G,求直线GD的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F1,F2分别是双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)
的左,右焦点,P是双曲线的上一点,若
PF1
PF2
=0
|
PF1
|•|
PF2
|=3ab
,则双曲线的离心率是
 

查看答案和解析>>

同步练习册答案