精英家教网 > 高中数学 > 题目详情
17.执行如图所示的程序框图,若输入n的值为2,则输出s的值是(  )
A.1B.2C.4D.7

分析 模拟执行程序框图,依次写出每次循环得到的S,i的值,当i=3时不满足条件i≤n,最后输出S的值为2.

解答 解:模拟执行程序框图,可得循环的结果依次为:
S=1+0=1,i=2;
S=1+1=2,i=3.
不满足条件i≤n,最后输出S的值为2.
故选:B.

点评 本题主要考查了循环结构的程序框图,正确依次写出每次循环得到的S,i的值是解题的关键,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.设函数f(x)=x2-klnx,k>0.
(Ⅰ)若f(x)在点(1,f(1))处的切线过点(2,2),求k的值.
(Ⅱ)若f(x)的最小值小于零,证明f(x)在(1,$\sqrt{e}$]上仅有一个零点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.定义:对于函数f(x),若在定义域内存在实数x0,满足f(-x0)=-f(x0),则称x0为函数f(x)的“奇对称点”.
(Ⅰ)求函数f(x)=x2+2x-4的“奇对称点”;
(Ⅱ)若函数f(x)=ln(x+m)在[-1,1]上存在“奇对称点”,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知椭圆E:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$(a>b>0)的焦距为2,且过椭圆右焦点F2与上顶点的直线l1与圆O:x2+y2=$\frac{1}{2}$相切.
(1)求椭圆E的方程;
(2)是否存在直线l2,满足l2∥l1,并且l2与椭圆E交于A、B两点,以AB为直径的圆与y轴相切,若存在,请求出l2的方程,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在数列{an}中,已知a1=1,an+1-an=2,则{an}的通项公式是(  )
A.an=2n+1B.an=2nC.an=2n-1D.an=2n+3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)=|lnx|-k有两个不同的零点a,b,则代数式|$\frac{{a}^{2}+{b}^{2}+2}{a-b}$|的最小值是(  )
A.8$\sqrt{2}$B.8C.4$\sqrt{2}$D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.(1)求$\frac{2π}{3}$的正弦、余弦和正切值(画图);
(2)角α的终边经过点P(-3,-4),求角α的正弦、余弦和正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设函数f(x)=$\sqrt{3}$cos($\frac{π}{3}$x+$\frac{π}{2}$),若对任意x∈R都有f(x1)≥f(x)≥f(x2)成立,则|x1-x2|的最小值为(  )
A.6B.3C.$\frac{3}{2}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知数列{an}的前n项和为Sn,满足:a1=a(a≠2,a∈R),an+1=3Sn-2n+1.求证:{Sn-2n}为等比数列.

查看答案和解析>>

同步练习册答案