精英家教网 > 高中数学 > 题目详情

【题目】已知等比数列前n项,前2n项,前3n项的和分别为SnS2nS3n,求证:=Sn(S2nS3n).

【答案】证明见解析

【解析】试题分析:

设此等比数列的公比为q,首项为a1分类讨论:

q=1时,则Sn=na1S2n=2na1S3n=3na1满足,

q≠1时,则Sn=S2n=S3n=据此计算可知也满足.

综上可得题中的等式成立.

试题解析:

设此等比数列的公比为q,首项为a1

q=1时,则Sn=na1S2n=2na1S3n=3na1

SS=n2a+4n2a=5n2aSn(S2nS3n)=na1(2na1+3na1)=5n2a

SS=Sn(S2nS3n).

q≠1时,则Sn=S2n=S3n=

SS=·[(1-qn)2+(1-q2n)2]=·(1-qn)2·(2+2qnq2n).

Sn(S2nS3n)=·(1-qn)2·(2+2qnq2n),SS=Sn(S2nS3n).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在实数集R上定义一种运算“*”,对于任意给定的a、b∈R,a*b为唯一确定的实数,且具有性质:
1)对任意a、b∈R,a*b=b*a;
2)对任意a、b∈R,a*0=a;
3)对任意a、b∈R,(a*b)*c=c*(ab)+(a*c)+(c*b)﹣2c.
关于函数f(x)=x* 的性质,有如下说法:
①在(0,+∞)上函数f(x)的最小值为3;
②函数f(x)为奇函数;
③函数f(x)的单调递增区间为(﹣∞,﹣1),(1,+∞).
其中所有正确说法的个数为(
A.0
B.1
C.2
D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为响应党中央“扶贫攻坚”的号召,某单位指导一贫困村通过种植紫甘薯来提高经济收入.紫甘薯对环境温度要求较高,根据以往的经验,随着温度的升高,其死亡株数成增长的趋势.下表给出了2018年种植的一批试验紫甘薯在不同温度时6组死亡的株数:

温度(单位:℃)

21

23

24

27

29

32

死亡数(单位:株)

6

11

20

27

57

77

经计算:.

其中分别为试验数据中的温度和死亡株数,

(1)是否有较强的线性相关性? 请计算相关系数(精确到)说明.

(2)并求关于的回归方程(都精确到);

(3)用(2)中的线性回归模型预测温度为时该批紫甘薯死亡株数(结果取整数).

附:对于一组数据,……,

线性相关系数通常情况下当大于0.8时,认为两

个变量有很强的线性相关性

其回归直线的斜率和截距的最小二乘估计分别为:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中,在底面的射影为的中点,的中点.

1)证明:平面

2)求二面角的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知椭圆,过点,离心率为,左、右焦点分别为.点为直线上且不在轴上的任意一点,直线与椭圆的交点分别为为坐标原点.

)求椭圆的标准方程

)设直线斜率分别为

证明:

问直线上是否存在一点,使直线的斜率满足?若存在,求出所有满足条件的点的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和Sn=2n2-4.

(1)求数列{an}的通项公式;

(2)bn=an·log2an,求数列{bn}的前n项和Tn.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(题文)如图在三棱锥中, 分别为棱的中点,已知

求证(1)直线平面

(2)平面 平面.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在空间四边形ABCD的边AB,BC,CD,DA上分别取点E,F,G,H,如果EH,FG相交于一点M,那么M一定在直线________上.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了选拔参加自行车比赛的选手,对自行车运动员甲、乙两人在相同条件下进行了6次测试,测得他们的最大速度(单位:m/s)的数据如下:

27

38

30

37

35

31

33

29

38

34

28

36

(1)画出茎叶图,由茎叶图你能获得哪些信息;

(2)估计甲、乙两运动员的最大速度的平均数和方差,并判断谁参加比赛更合适.

查看答案和解析>>

同步练习册答案