精英家教网 > 高中数学 > 题目详情
9.在如图所示的直三棱柱ABC-A1B1C1中,面AA1B1B和面AA1C1C都是边长为1的正方形且互相垂直,D为AA1的中点,E为BC1的中点.
(Ⅰ)证明:DE∥平面A1B1C1
(Ⅱ)求平面C1BD和平面CBD所成的角(锐角)的余弦值.

分析 (Ⅰ)过E作EF∥BC交BC于F,可得EF为△BB1C1 的中位线,结合已知可得EF∥DA1,且EF=DA1,则四边形DA1FE为平行四边形,得DE∥A1F,由线面平行的判定可得DE∥平面A1B1C1
(Ⅱ)由题意可得AC⊥平面AA1B1B,则AC⊥BC.分别以BA、AD、AC所在直线为x、y、z轴建立空间直角坐标系,求出所用点的坐标,得到平面C1BD和平面CBD的一个法向量,由两法向量所成角的余弦值可得平面C1BD和平面CBD所成的角(锐角)的余弦值.

解答 (Ⅰ)证明:如图,过E作EF∥BC交BC于F,
∵E为BC1的中点,∴EF为△BB1C1 的中位线,则EF=$\frac{1}{2}B{B}_{1}$,
又D为AA1中点,∴D${A}_{1}=\frac{1}{2}A{A}_{1}$,
∵四边形AA1B1B为正方形,∴EF∥DA1,且EF=DA1
∴四边形DA1FE为平行四边形,则DE∥A1F,
∵DE?平面A1B1C1,A1F?平面A1B1C1
∴DE∥平面A1B1C1
(Ⅱ)解:∵AA1C1C是正方形,∴AC⊥AA1
又平面AA1B1B⊥平面AA1C1C,且平面AA1B1B⊥平面AA1C1C,
∴AC⊥平面AA1B1B,则AC⊥BC.
分别以BA、AD、AC所在直线为x、y、z轴建立空间直角坐标系,
则C(0,0,1),D(0,$\frac{1}{2}$,0),B(-1,0,0),C1(0,1,1),
$\overrightarrow{BD}=(1,\frac{1}{2},0)$,$\overrightarrow{BC}=(1,0,1)$,$\overrightarrow{B{C}_{1}}=(1,1,1)$.
设平面BCD的一个法向量为$\overrightarrow{m}=(x,y,z)$,
由$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{BD}=x+\frac{1}{2}y=0}\\{\overrightarrow{m}•\overrightarrow{BC}=x+z=0}\end{array}\right.$,令y=2,得$\overrightarrow{m}=(-1,2,1)$;
设平面C1BD的一个法向量为$\overrightarrow{n}=(x,y,z)$,
由$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{BD}=x+\frac{1}{2}y=0}\\{\overrightarrow{n}•\overrightarrow{B{C}_{1}}=x+y+z=0}\end{array}\right.$,令y=2,得$\overrightarrow{n}=(-1,2,-1)$.
∴cos<$\overrightarrow{m},\overrightarrow{n}$>=$\frac{\overrightarrow{m}•\overrightarrow{n}}{|\overrightarrow{m}||\overrightarrow{n}|}=\frac{4}{\sqrt{1+4+1}×\sqrt{1+4+1}}=\frac{2}{3}$.
∴平面C1BD和平面CBD所成的角(锐角)的余弦值为$\frac{2}{3}$.

点评 本题考查直线与平面平行的判定,考查了空间想象能力和思维能力,训练了利用空间向量求二面角的平面角,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.在△ABC中,角A,B,C所对的边分别为a,b,c,且2sinCcosB=2sinA+sinB,c=3ab,则ab的最小值是(  )
A.$\frac{1}{9}$B.$\frac{1}{3}$C.$\frac{2+\sqrt{3}}{9}$D.$\frac{2-\sqrt{3}}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知数列{an}为等差数列,a1=sinθ(-$\frac{π}{2}$≤θ≤$\frac{π}{2}$),a5=a3+1,且其前10项和S10=$\frac{55}{2}$.
(1)求θ的值;
(2)求数列bn=an+($\frac{1}{2}$)${\;}^{2{a}_{n}}$的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,三棱锥P-ABC中,底面ABC为等边三角形,O为△ABC的中心,平面PBC⊥平面ABC,PB=PC=BC=$\sqrt{3}$,D为AP上一点,且AD=2DP.
(I)求证:DO∥平面PBC;
(II)求证:AC⊥平面OBD;
(III)设M为PC的中点,求二面角M-BD-O的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.《数学九章》中对已知三角形三边长求三角形的面积的求法填补了我国传统数学的一个空白,与著名的海伦公式完全等价,由此可以看出我国古代已具有很高的数学水平,其求法是:“以小斜幂并大斜幂减中斜幂,余半之,自乘于上,以小斜幂乘大斜幂减上,余四约之,为实.一为从隔,开平方得积.”若把以上这段文字写成公式,即S=$\sqrt{\frac{1}{4}[{c}^{2}{a}^{2}-(\frac{{c}^{2}+{a}^{2}-{b}^{2}}{2})^{2}]}$.现有周长为4+$\sqrt{10}$的△ABC满足sinA:sinB:sinC=($\sqrt{2}$-1):$\sqrt{5}$:
($\sqrt{2}$+1),试用以上给出的公式求得△ABC的面积为(  )
A.$\frac{\sqrt{3}}{4}$B.$\frac{\sqrt{5}}{4}$C.$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{5}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=alnx-(a+b)x+x2(a,b∈R).
(I)若a=2,b=1,求函数f(x)在x=1处的切线方程;
(II) 若f(x)在x=1处取得极值,讨论函数f(x)的单调性;
(III)当a=1时,设函数φ(x)=f(x)-x2有两个零点,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知向量$\overrightarrow{a}$=(sinθ,1),$\overrightarrow{b}$=(cosθ,$\frac{1}{2}$),且$\overrightarrow{a}$∥$\overrightarrow{b}$,则2cos($\frac{3π}{2}$+2θ)+$\frac{1}{2}$cos2θ的值为(  )
A.$\frac{13}{10}$B.$\frac{19}{10}$C.$\frac{3}{2}$D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.如图所示的程序框图,运行相应的程序,则输出S的值为15.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知椭圆$E:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$内有一点M(2,1),过M的两条直线l1,l2分别与椭圆E交于A,C和B,D两点,且满足$\overrightarrow{AM}=λ\overrightarrow{MC},\overrightarrow{BM}=λ\overrightarrow{MD}$(其中λ>0,且λ≠1),若λ变化时,AB的斜率总为$-\frac{1}{2}$,则椭圆E的离心率为(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{5}-1}}{2}$C.$\frac{{\sqrt{2}}}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

同步练习册答案