精英家教网 > 高中数学 > 题目详情
7.已知f(x)=cosx,且f1(x)=f′(x),fn+1(x)=fn′(x)(n∈N*),则f2015(x)=(  )
A.-sin xB.-cos xC.sin xD.cos x

分析 由题意对函数的变化规律进行探究,发现呈周期性的变化,且其周期是4,即可得到结论

解答 解:由题意f(x)=cosx,
f1(x)=f′(x)=-sinx,
f2(x)=f1′(x)=-cosx,
f3(x)=f2′(x)=sinx,
f4(x)=f3′(x)=cosx,
由此可知,在逐次求导的过程中,所得的函数呈周期性变化,从0开始计,周期是4,
∵2015=4×503+3,
故f2015(x)=f3(x)=sinx,
故选:C.

点评 本题考查函数的周期性,探究过程中用的是归纳推理,对其前几项进行研究得出规律,求解本题的关键一是要归纳推理的意识,一是对正、余弦函数的导数求法公式熟练掌握.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.观察下列式子:
$\frac{1}{3}$=$\frac{1}{3}$;
$\frac{1}{3}$+$\frac{1}{15}$=$\frac{2}{5}$;
$\frac{1}{3}$+$\frac{1}{15}$+$\frac{1}{35}$=$\frac{3}{7}$;
$\frac{1}{3}$+$\frac{1}{15}$+$\frac{1}{35}$+$\frac{1}{63}$=$\frac{4}{9}$;

则可以归纳,当n∈N*时,有式子$\frac{1}{3}$+$\frac{1}{15}$+$\frac{1}{35}$+…+$\frac{1}{4{n}^{2}-1}$=$\frac{n}{2n+1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在边长为2的正三角形ABC中,$\overrightarrow{BC}$=2$\overrightarrow{BD},\overrightarrow{CA}$=3$\overrightarrow{CE}$,设$\overrightarrow{AB}$=$\overrightarrow a,\overrightarrow{AC}$=$\overrightarrow b$.
(Ⅰ)用$\overrightarrow a,\overrightarrow b$表示$\overrightarrow{AD},\overrightarrow{BE}$;
(Ⅱ)求$\overrightarrow{AD}•\overrightarrow{BE}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.定义运算a?b为执行如右图所示的程序框图输出的S值,则$({2^-}^{{{log}_2}3})?({log_{\frac{1}{2}}}4)$的值为(  )
A.$\frac{7}{9}$B.$-\frac{8}{3}$C.4D.-4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知α=180°,求sinα.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知定点A(3,2),若点P为抛物线y2=2x上的动点,则当P到抛物线的焦点F的距离|PF|与|PA|之和最小时,点P的坐标为(2,2).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知a为常数,y=|x-a|-|x+a|最大值为M,最小值为N,且M-N=12,则实数a的值为(  )
A.6B.±6C.3D.±3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若角α满足条件tanαsinα<0,-1<sinα+cosα<1,则角α是第二象限角.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数 f(x)=ex-ax-1(a∈R).
(1)求函数f(x)的单调区间;
(2)若函数F(x)=f(x)-$\frac{1}{2}{x^2}$在[1,2]上有且仅有一个零点,求a的取值范围.

查看答案和解析>>

同步练习册答案