精英家教网 > 高中数学 > 题目详情
19.在边长为2的正三角形ABC中,$\overrightarrow{BC}$=2$\overrightarrow{BD},\overrightarrow{CA}$=3$\overrightarrow{CE}$,设$\overrightarrow{AB}$=$\overrightarrow a,\overrightarrow{AC}$=$\overrightarrow b$.
(Ⅰ)用$\overrightarrow a,\overrightarrow b$表示$\overrightarrow{AD},\overrightarrow{BE}$;
(Ⅱ)求$\overrightarrow{AD}•\overrightarrow{BE}$的值.

分析 (Ⅰ)由题意,D为BC中点,利用中点公式求出$\overrightarrow{AD}$,$\overrightarrow{BE}=\overrightarrow{AE}-\overrightarrow{AB}$;
(Ⅱ)利用(Ⅰ)的结论,进行向量的乘法运算即可.

解答 解:(Ⅰ)由条件知$\overrightarrow{AD}=\frac{1}{2}({\overrightarrow{AB}+\overrightarrow{AC}})=\frac{1}{2}({\overrightarrow a+\overrightarrow b})$,
$\overrightarrow{BE}=\overrightarrow{AE}-\overrightarrow{AB}=\frac{2}{3}\overrightarrow{AC}-\overrightarrow{AB}=\frac{2}{3}\overrightarrow b-\overrightarrow a$.…(5分)
(Ⅱ)由题意得$|{\overrightarrow a}|=|{\overrightarrow b}|=2,\overrightarrow a•\overrightarrow b=2$
∴$\overrightarrow{AD}•\overrightarrow{BE}=\frac{1}{2}({\overrightarrow a+\overrightarrow b})•({\frac{2}{3}\overrightarrow b-\overrightarrow a})$=$\frac{1}{2}({\frac{2}{3}{{\overrightarrow b}^2}-{{\overrightarrow a}^2}-\frac{1}{3}\overrightarrow a•\overrightarrow b})$=$\frac{1}{2}({\frac{2}{3}×4-4-\frac{1}{3}×2})=-1$.…(10分)

点评 本题考查了平面向量三角形法则的运用以及向量的数量积计算;属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=a(1-x)lnx+b在x=e处的切线与y=($\frac{2}{e}$-4)x+1平行,且x=1是函数f(x)的一个零点.
(1)求y=f(x)的解析式及极值;
(2)当x>0时,判断函数y=$\frac{1}{2}$f′(x)的图象是否恒在y=$\frac{1+{e}^{-2}}{ln(x+1)}$图象下方,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.x2-y2cosθ=1,其中θ∈(π,$\frac{3}{2}$π),则方程所表示的曲线为(  )
A.焦点在x轴上的椭圆B.焦点在y轴上的椭圆
C.焦点在x轴上的双曲线D.表示焦点在y轴上的双曲线

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.函数f(x)=2sinx+x,x∈(0,2π)的单调增区间为$(0,\frac{2π}{3})$和$(\frac{4π}{3},2π)$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在下列命题中
①函数$y=\frac{1}{x}$的单调递减区间是(-∞,0)∪(0,+∞).
②用独立性检测(2×2列联表法)来考察两个变量是否有关系时,算出的随机变量x2的值越大,说明“x与y有关系”成立的可能性越大.
③命题“?x∈R,x2-4x+5≤0”的否定是“?x∈R,x2-4x+5>0”.
④一般地,当变量y与x之间的相关系数|r|>0.75时,我们就认为两个变量之间具有较强的线性相关关系,若r=-0.9568,则变量y与x之间具有较强的线性关系.
其中正确的命题个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,点A,B分别是椭圆E:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的左、右顶点,圆B:(x-2)2+y2=9,经过椭圆E的左焦点F.
(Ⅰ)求椭圆E的方程;
(Ⅱ)过A作直线l与y轴交于点Q,与椭圆E交于点P(异于A).求$\overrightarrow{{F_1}Q}$•$\overrightarrow{BP}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.函数f(x)=ax+loga(x+1)在[0,1]上的最大值与最小值之和为a,则a的值为(  )
A.$\frac{1}{4}$B.4C.$\frac{1}{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知f(x)=cosx,且f1(x)=f′(x),fn+1(x)=fn′(x)(n∈N*),则f2015(x)=(  )
A.-sin xB.-cos xC.sin xD.cos x

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知下列命题:①命题“?x∈R,2x2+1>5x”的否定是“?x∈R,2x2+1<5x”;
②已知p,q为两个命题,若“p∨q”为假命题,则“(¬p)∧(¬q)”为真命题;
③“a>2”是“a>5”的充分不必要条件;
④“若xy=0,则x=0且y=0”的逆否命题为真命题.
其中所有真命题的序号是②.

查看答案和解析>>

同步练习册答案