精英家教网 > 高中数学 > 题目详情
1.(1)已知cos(α-30°)=$\frac{12}{13}$,30°<α<90°,求cosα;
(2)已知α、β都是锐角,且cos(α+β)=$\frac{33}{65}$,cosβ=$\frac{5}{13}$,求cosα的值;
(3)已知$\frac{π}{2}$<β<α<$\frac{3π}{4}$,cos(α-β)=$\frac{12}{13}$,sin(α+β)=-$\frac{3}{5}$,求cos2α的值.

分析 (1)利用同角三角函数的基本关系,两角和的余弦公式,求得 cosα=cos[(α-30°)+30°]的值.
(2)利用同角三角函数的基本关系,两角差的余弦公式,求得cosα=cos[(α+β)-β]的值.
(3)利用同角三角函数的基本关系,两角和的余弦公式,求得cos2α=cos[(α+β)+(α-β)]的值.

解答 解:(1)∵已知cos(α-30°)=$\frac{12}{13}$,30°<α<90°,
∴sin(α-30°)=$\sqrt{{1-cos}^{2}(α-30°)}$=$\frac{5}{13}$,
∴cosα=cos[(α-30°)+30°]=cos(α-30°)cos30°-sin(α-30°)•sin30°
=$\frac{12}{13}•\frac{\sqrt{3}}{2}$-$\frac{5}{13}$$•\frac{1}{2}$=$\frac{12\sqrt{3}-5}{36}$.
(2)已知α、β都是锐角,且cos(α+β)=$\frac{33}{65}$,cosβ=$\frac{5}{13}$,
∴sin(α+β)=$\sqrt{{1-cos}^{2}(α+β)}$=$\frac{56}{65}$,sinβ=$\sqrt{{1-cos}^{2}β}$=$\frac{12}{13}$,
∴cosα=cos[(α+β)-β]=cos(α+β)•cosβ+sin(α+β)•sinβ=$\frac{33}{65}•\frac{5}{13}$+$\frac{56}{65}•\frac{12}{13}$=$\frac{837}{845}$.
(3)∵已知$\frac{π}{2}$<β<α<$\frac{3π}{4}$,cos(α-β)=$\frac{12}{13}$,∴sin(α-β)=$\sqrt{{1-cos}^{2}(α-β)}$=$\frac{5}{13}$,
∵sin(α+β)=-$\frac{3}{5}$,∴α+β为第三象限角,cos(α+β)=-$\sqrt{{1-sin}^{2}(α+β)}$=-$\frac{4}{5}$,
∴cos2α=cos[(α+β)+(α-β)]=cos(α+β)•cos(α-β)-sin(α+β)sin(α-β)
=-$\frac{4}{5}$•$\frac{12}{13}$-(-$\frac{3}{5}$)•$\frac{5}{13}$=-$\frac{33}{65}$.

点评 本题主要考查同角三角函数的基本关系,两角和差的三角公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.2017年的3月25日,中国国家队在2018俄罗斯世界杯亚洲区预选赛12强战小组赛中,在长沙以1比0力克韩国国家队,赛后有六人队员打算排成一排照相,其中队长主动要求排在排头或排尾,甲、乙两人必须相邻,则满足要求的排法有(  )
A.34种B.48种C.96种D.144种

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设双曲线$\frac{y^2}{a^2}-\frac{x^2}{b^2}$=1(a>0,b>0)的离心率是3,则其渐近线的方程为(  )
A.$x±2\sqrt{2}y=0$B.$2\sqrt{2}x±y=0$C.x±8y=0D.8x±y=0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数$f(x)=tan(x+\frac{π}{4})$.
(Ⅰ)求f(x)的定义域;
(Ⅱ)设β是锐角,且$f(β)=2sin(β+\frac{π}{4})$,求β的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知$cos({α-\frac{π}{3}})=-\frac{1}{2}$,则$sin({\frac{π}{6}+α})$的值等于(  )
A.$\frac{\sqrt{3}}{2}$B.$-\frac{{\sqrt{3}}}{2}$C.$\frac{1}{2}$D.$-\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知公差不为零的等差数列{an}满足:a3+a8=20,且a5是a2与a14的等比中项.
(1)求数列{an}的通项公式;
(2)设数列{bn}满足bn=$\frac{1}{{a}_{n}{a}_{n+1}}$,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知θ∈[0,π),若对任意的x∈[-1,0].不等式x2cosθ+(x+1)2sinθ+x2+x>0恒成立,则实数θ的取值范围是(  )
A.($\frac{π}{12}$,$\frac{5π}{12}$)B.($\frac{π}{6}$,$\frac{π}{4}$)C.($\frac{π}{4}$,$\frac{3π}{4}$)D.($\frac{π}{6}$,$\frac{5π}{6}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如果函数y=f(x)的定义域为R,且存在实常数a,使得对于定义域内任意x,都有f(x+a)=f(-x)成立,则称此函数f(x)具有“P(a)性质”.
(1)判断函数y=cosx是否具有“P(a)性质”,若具有“P(a)性质”,求出所有a的值的集合;若不具有“P(a)性质”,请说明理由;
(2)已知函数y=f(x)具有“P(0)性质”,且当x≤0时,f(x)=(x+m)2,求函数y=f(x)在区间[0,1]上的值域;
(3)已知函数y=g(x)既具有“P(0)性质”,又具有“P(2)性质”,且当-1≤x≤1时,g(x)=|x|,若函数y=g(x)的图象与直线y=px有2017个公共点,求实数p的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.2017年是某市大力推进居民生活垃圾分类的关键一年,有关部门为宣传垃圾分类知识,面向该市市民进行了一次“垃圾分类知识”的网络问卷调查,每位市民仅有一次参与机会,通过抽样,得到参与问卷调查中的1000人的得分数据,其频率分布直方图如图所示:

(1)由频率分布直方图可以认为,此次问卷调查的得分Z服从正态分布N(μ,210),μ近似为这1000人得分的平均值(同一组数据用该区间的中点值作代表),利用该正态分布,求P(50.5<Z<94).
(2)在(1)的条件下,有关部门为此次参加问卷调查的市民制定如下奖励方案:
①得分不低于μ可获赠2次随机话费,得分低于μ则只有1次;
②每次赠送的随机话费和对应概率如下:
赠送话费(单位:元)1020
概率$\frac{2}{3}$ $\frac{1}{3}$ 
现有一位市民要参加此次问卷调查,记X(单位:元)为该市民参加问卷调查获赠的话费,求X的分布列.
附:$\sqrt{210}$≈14.5
若Z~N(μ,δ2),则P(μ-δ<Z<μ+δ)=0.6826,P(μ-2δ<Z<μ+2δ)=0.9544.

查看答案和解析>>

同步练习册答案