【题目】求下列函数的最大值和最小值:
(1)
;
(2)
;
(3)
;
(4)
.
【答案】(1)
,无最大值;(2)
,
;(3)
,
;(4)
,无最小值
【解析】
对于(1),利用换元法,然后利用二次函数的单调性判断即可.
对于(2),利用对勾函数的性质进行判断即可.
对于(3),利用函数的运算关系即可得
的单调性,进而可直接求解
对于(4),令
,
,然后化简得
,进而利用对勾函数的性质即可求解.
对于(1)
,当
时成立,令
,故
,
,故当
时,
,无最大值.
对于(2)
;该函数为对勾函数,当
时,
在
上单调递减,在
上单调递增,故当
时,
,当
时,
;
对于(3)
,整理为
,明显地,这是两个增函数相加,所以,对于
,在
上单调递增,所以,当
时,
,当
时,![]()
对于(4)
,因为
,所以,令
,
,则
,故可化简为:
,明显地,
,当
时,即
时,
,该函数在
时无最小值.
科目:高中数学 来源: 题型:
【题目】如图1,ABCD为菱形,∠ABC=60°,△PAB是边长为2的等边三角形,点M为AB的中点,将△PAB沿AB边折起,使平面PAB⊥平面ABCD,连接PC、PD,如图2,
![]()
(1)证明:AB⊥PC;
(2)求PD与平面ABCD所成角的正弦值
(3)在线段PD上是否存在点N,使得PB∥平面MC?若存在,请找出N点的位置;若不存在,请说明理由
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某钢管生产车间生产一批钢管,质检员从中抽出若干根对其直径(单位:
)进行测量,得出这批钢管的直径
服从正态分布
.
(1)当质检员随机抽检时,测得一根钢管的直径为
,他立即要求停止生产,检查设备,请你根据所学知识,判断该质检员的决定是否有道理,并说明判断的依据;
(2)如果钢管的直径
满足
为合格品(合格品的概率精确到0.01),现要从60根该种钢管中任意挑选3根,求次品数
的分布列和数学期望.
(参考数据:若
,则
;
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】分层抽样是将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,组成一个样本的抽样方法;在《九章算术》第三章“衰分”中有如下问题:“今有甲持钱五百六十,乙持钱三百五十,丙持钱一百八十,凡三人俱出关,关税百钱.欲以钱多少衰出之,问各几何?”其译文为:今有甲持560钱,乙持350钱,丙持180钱,甲、乙、丙三人一起出关,关税共100钱,要按照各人带钱多少的比例进行交税,问三人各应付多少税?则下列说法错误的是( )
A. 甲应付
钱 B. 乙应付
钱
C. 丙应付
钱 D. 三者中甲付的钱最多,丙付的钱最少
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分13分)
某产品按行业生产标准分成8个等级,等级系数X依次为1,2,……,8,其中X≥5为标准A,X≥3为标准B,已知甲厂执行标准A生产该产品,产品的零售价为6元/件;乙厂执行标准B生产该产品,产品的零售价为4元/件,假定甲、乙两厂得产品都符合相应的执行标准
(I)已知甲厂产品的等级系数X1的概率分布列如下所示:
![]()
且X1的数字期望EX1=6,求a,b的值;
(II)为分析乙厂产品的等级系数X2,从该厂生产的产品中随机抽取30件,相应的等级系数组成一个样本,数据如下:
3 5 3 3 8 5 5 6 3 4
6 3 4 7 5 3 4 8 5 3
8 3 4 3 4 4 7 5 6 7
用这个样本的频率分布估计总体分布,将频率视为概率,求等级系数X2的数学期望.
在(I)、(II)的条件下,若以“性价比”为判断标准,则哪个工厂的产品更具可购买性?说明理由.
注:(1)产品的“性价比”=
;
(2)“性价比”大的产品更具可购买性.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点P(x,y)在△ABC的边界和内部运动,其中A(1,0),B(2,1),C(4,4).若z=2x-y的最小值为M,最大值为N.
(1)求M,N;
(2)若m+n=M,m>0,n>0,求
的最小值,并求此时的m,n的值;
(3)若m+n+mn=N,m>0,n>0,求mn的最大值和m+n的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com