如图所示,PA为圆的切线,A为切点,PBC是过点O的割线,PA=10,PB=5,的平分线与BC和圆分别交于点D和E。
(1)求证:;
(2)求AD·AE的值。
( 1)直接根据∠PAB=∠ACP以及∠P公用,得到△PAB∽△PCA,进而求出结论;
(2)90
解析试题分析:( I)直接根据∠PAB=∠ACP以及∠P公用,得到△PAB∽△PCA,进而求出结论;( II)先根据切割线定理得到PA2=PB•PC;结合第一问的结论以及勾股定理求出;再结合条件得到△ACE∽△ADB,进而求出结果. 解:( I)∵PA为⊙O的切线,
∴∠PAB=∠ACP,…(1分)
又∠P公用,∴△PAB∽△PCA.…(2分)
∴.…(3分)
( II)∵PA为⊙O的切线,PBC是过点O的割线,
∴PA2=PB•PC.…(5分)
又∵PA=10,PB=5,∴PC=20,BC=15.…(6分)
由( I)知,,
∵BC是⊙O的直径,
∴∠CAB=90°.
∴AC2+AB2=BC2=225,
∴ …(7分)
连接CE,则∠ABC=∠E,…(8分)
又∠CAE=∠EAB,
∴△ACE∽△ADB,
∴ …(9分)
∴.…(10分)
考点:与圆有关的比例线段、相似三角形
点评:本题主要考查与圆有关的比例线段、相似三角形的判定及切线性质的应用.解决本题第一问的关键在于先由切线PA得到∠PAB=∠ACP.
科目:高中数学 来源: 题型:解答题
已知C点在⊙O直径BE的延长线上,CA切⊙O于A 点,CD是∠ACB的平分线且交AE于点F,交AB于点D
(1)求∠ADF的度数; (2)若AB=AC,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知,如图,在平行四边形ABCD中,延长DA到点E,延长BC到点F,使得AE=CF,连接EF,分别交AB,CD于点M,N,连接DM,BN.
(1)求证:△AEM ≌△CFN;
(2)求证:四边形BMDN是平行四边形.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com