已知,如图,在平行四边形ABCD中,延长DA到点E,延长BC到点F,使得AE=CF,连接EF,分别交AB,CD于点M,N,连接DM,BN.
(1)求证:△AEM ≌△CFN;
(2)求证:四边形BMDN是平行四边形.
(1)根据三角形全等的判定定理可知结论。
(2)结合平行四边形的判定定理可知,只要证明一组对边平行且相等,既可以得到证明。
解析试题分析:证明:(1)四边形ABCD是平行四边形,
∴∠DAB=∠BCD,
∴∠EAM=∠FCN, 2分
又∵AD∥BC,
∴∠E=∠F. 3分
在△AEM与△CFN中,
∠EAM=∠FCN AE="CF" ∠E=∠F ,
∴△AEM≌△CFN 5分
(2)∵四边形ABCD是平行四边形,
∴AB ∥= CD, 6分
又由(1)得AM=CN,
∴BM ∥= DN, 8分
∴四边形BMDN是平行四边形. 9分
考点:三角形的全等,平行四边形
点评:解决的关键是利用角相等,和边相等来证明全等,同时利用平行四边形的判定定理,得到证明,属于基础题。
科目:高中数学 来源: 题型:解答题
如图,已知⊙O的半径为1,MN是⊙O的直径,过M点作⊙O的切线AM,C是AM的中点,AN交⊙O于B点,若四边形BCON是平行四边形;
(Ⅰ)求AM的长;
(Ⅱ)求sin∠ANC.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图所示,PA为圆的切线,A为切点,PBC是过点O的割线,PA=10,PB=5,的平分线与BC和圆分别交于点D和E。
(1)求证:;
(2)求AD·AE的值。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,AB、CD是⊙O的两条平行切线,B、D为切点,AC为⊙O的切线,切点为E.过A作AF⊥CD,F为垂足.
(1)求证:四边形ABDF是矩形;
(2)若AB=4,CD=9,求⊙O的半径.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,A,B,C,D四点在同一圆上,AD的延长线与BC的延长线交于E点,且EC=ED.
(1)证明:CD∥AB;
(2)延长CD到F,延长DC到G,使得EF=EG,证明:A,B,G,F四点共圆.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com