精英家教网 > 高中数学 > 题目详情

如图,已知⊙O的半径为1,MN是⊙O的直径,过M点作⊙O的切线AM,C是AM的中点,AN交⊙O于B点,若四边形BCON是平行四边形;

(Ⅰ)求AM的长;
(Ⅱ)求sin∠ANC. 

(Ⅰ);(Ⅱ).

解析试题分析:(Ⅰ)先证得,即可得;(Ⅱ)作,得,再在中求解sin∠ANC.
试题解析:(Ⅰ)连接,则
因为四边形是平行四边形,所以
因为的切线,所以,可得
又因为的中点,所以,得,故.    (5分)
(Ⅱ)作点,则,由(Ⅰ)可知
.                   (10分)
考点:平面几何关系证明.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,是⊙的直径, 是⊙的切线,的延长线交于点为切点.若的平分线和⊙分别交于点,求的值.
 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

切线与圆切于点,圆内有一点满足,的平分线交圆于,,延长交圆于,延长交圆于,连接.

(Ⅰ)证明://;
(Ⅱ)求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,自⊙外一点引切线与⊙切于点的中点,过引割线交⊙两点. 求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,为圆的直径,为垂直于的一条弦,垂足为,弦交于点.

(Ⅰ)证明:四点共圆;
(Ⅱ)证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知⊙O是的外接圆,边上的高,是⊙O的直径.

(1)求证:
(II)过点作⊙O的切线交的延长线于点,若,求的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,过圆O外一点P作该圆的两条割线PAB和PCD,分别交圆O于点A,B,C,D弦AD和BC交于Q点,割线PEF经过Q点交圆O于点E、F,点M在EF上,且:
(I)求证:PA·PB=PM·PQ.
(II)求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,的切线,过圆心的直径,相交于两点,连结. (1) 求证:
(2) 求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知,如图,在平行四边形ABCD中,延长DA到点E,延长BC到点F,使得AE=CF,连接EF,分别交AB,CD于点M,N,连接DM,BN.

(1)求证:△AEM ≌△CFN;
(2)求证:四边形BMDN是平行四边形.

查看答案和解析>>

同步练习册答案