精英家教网 > 高中数学 > 题目详情
15.在△ABC中,若bcosC+ccosB=asinA,则此三角形为(  )
A.等边三角形B.等腰三角形C.直角三角形D.等腰直角三角形

分析 已知等式利用正弦定理化简,利用两角和与差的正弦函数公式及诱导公式整理后,求出sinA的值,进而求出A的度数,判断三角形形状即可.

解答 解:已知等式利用正弦定理化简得:sinBcosC+sinCcosB=sin2A,
整理得:sin(B+C)=sinA=sin2A,
∵sinA≠0,
∴sinA=1,即A=$\frac{π}{2}$,
则此三角形为直角三角形.
故选:C.

点评 此题考查了正弦定理,两角和与差的正弦函数公式,以及诱导公式的运用,熟练掌握公式及定理是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.函数f(x)=x2-8x+12,x∈[-5,5],那么任取一点x0∈[-5,5],使f(x0)≤0的概率是(  )
A.1B.$\frac{2}{3}$C.$\frac{3}{10}$D.$\frac{2}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在直角坐标系xOy中,曲线C1的参数方程为$\left\{\begin{array}{l}{x=1+cosα}\\{y=sinα}\end{array}\right.$(其中α为参数),以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=4sinθ.
(Ⅰ)若A,B为曲线C1,C2的公共点,求直线AB的斜率;
(Ⅱ)若A,B分别为曲线C1,C2上的动点,当|AB|取最大值时,求△AOB的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知命题p:x+y≠-2,命题q:x,y不都是-1,则p是q的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设点P为函数f(x)=x3-$\frac{1}{4x}$图象上任一点,则f(x)在点P处的切线的倾斜角α的取值范围为(  )
A.[$\frac{π}{3}$,π)B.($\frac{π}{6}$,$\frac{π}{3}$)C.($\frac{π}{6}$,$\frac{π}{2}$)D.[$\frac{π}{3}$,$\frac{π}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,在三棱锥P-ABC中,点D,E,F分别为棱PC,AC,AB的中点,已知PA⊥平面ABC,AB⊥BC,且AB=BC.
(1)求证:平面BED⊥平面PAC;
(2)求二面角F-DE-B的大小;
(3)若PA=6,DF=5,求PC与平面PAB所成角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数$f(x)=2sin(2x+\frac{π}{3})$.
(1)求f(x)的最小正周期;
(2)求f(x)的最小值及取最小值时相应的x值;
(3)求函数f(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.sin θ和cos θ为方程2x2-mx+1=0的两根,求$\frac{sinθ}{1-\frac{1}{tanθ}}$+$\frac{cosθ}{1-tanθ}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=loga(ax-$\sqrt{x}$)(a>0,a≠1为常数).
(Ⅰ)求函数f(x)的定义域;
(Ⅱ)若a=3,x∈[1,9],求函数f(x)的值域;
(Ⅲ)若函数y=af(x)的图象恒在直线y=-3x+1的上方,求实数a的取值范围.

查看答案和解析>>

同步练习册答案