精英家教网 > 高中数学 > 题目详情
如图所示,为函数f(x)=Asin(ωx+ϕ)+b图象的一部分.根据图象:
(1)求出函数f(x)的解析式;
(2)写出f(x)的单调递增区间.
考点:由y=Asin(ωx+φ)的部分图象确定其解析式,复合三角函数的单调性
专题:三角函数的图像与性质
分析:(1)由函数的最值求出A,由周期求出ω,由五点法作图求出φ的值,从而求得函数的解析式.
(2)令2kπ-
π
2
≤x+
π
3
≤2kπ+
π
2
,k∈z,求得x的范围,可得f(x)的单调递增区间.
解答: 解:(1)如图所示,∵
T
2
=
6
-
π
6
=π,∴t=2π,ω=1,
A=
3-1
2
=1,b=2.
当 x=
π
6
时,
π
6
+φ=
π
2
,∴φ=
π
3
,∴f(x)=sin(x+
π
3
)+2.
(2)令2kπ-
π
2
≤x+
π
3
≤2kπ+
π
2
,k∈z,求得2kπ-
6
≤x≤2kπ+
π
6

∴f(x)的单调递增区间是[2kπ-
6
,2kπ+
π
6
](k∈Z).
点评:本题主要考查利用y=Asin(ωx+φ)的图象特征,由函数y=Asin(ωx+φ)的部分图象求解析式,求正弦函数的增区间,由函数的最值求出A,由周期求出ω,由五点法作图求出φ的值,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,正方体的底面与正四面体的底面在同一平面α上,且AB∥CD,正方体的六个面所在的平面与直线CE,EF相交的平面个数分别记为m,n,那么m+n=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若m,n是两条不同的直线,α,β,γ是三个不同的平面,则下面命题正确的是(  )
A、若m⊆β,α⊥β,则m⊥α
B、若α∩γ=m,β∩γ=n,则α∥β
C、若m⊥β,m∥α,则α⊥β
D、若α⊥β,α⊥γ,则β⊥γ

查看答案和解析>>

科目:高中数学 来源: 题型:

设z=
1+i
1-i
+(1-i)2,则(1+x)4(1+zx)3展开式中x5项的系数是(  )
A、-2-3i
B、-12+3i
C、1+21i
D、-35i

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在直三棱柱ABC-A1B1C1中,D、E分别为CC1、AD的中点,F为BB1上的点,且B1F=3BF
(I)证明:EF∥平面ABC;
(Ⅱ)若AC=2
2
,CC1=2,BC=
2
∠ACB=
π
3
,求二面角B-AD-C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+(a-2)x+a-1,且f(x)在[2,+∞)上单调递增,在(-∞,2]上单调递减.
(1)求实数a的值;
(2)求函数f(x)的最小值;
(3)不等式f(x)≥-2的解.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+xsinx+cosx.
(1)求f(x)的最小值;
(2)若曲线y=f(x)在点(a,f(a))处与直线y=b相切,求a与b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在(0,+∞)上的函数f(x)对任意的x,y>0,均有f(xy)=f(x)•f(y),且当x>1时,f(x)<1,f(3)=
1
9

(1)求证f(x)>0;
(2)求证f(x)在(0,+∞)上单调递减;
(3)若f(m)=9,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
e1
e2
为相互垂直的单位向量,若向量λ
e1
+
e2
e1
e2
的夹角等于60°,则实数λ=
 

查看答案和解析>>

同步练习册答案