精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x2+xsinx+cosx.
(1)求f(x)的最小值;
(2)若曲线y=f(x)在点(a,f(a))处与直线y=b相切,求a与b的值.
考点:导数在最大值、最小值问题中的应用,利用导数研究曲线上某点切线方程
专题:综合题,导数的综合应用
分析:(1)由已知中函数的解析式,求导后判断函数的单调性,进而可得f(x)的最小值;
(2)若曲线y=f(x)在点(a,f(a))处与直线y=b相切,则f′(a)=0,b=f(a),进而可得a与b的值.
解答: 解:(1)由f(x)=x2+xsinx+cosx,
得f′(x)=2x+sinx+xcosx-sinx=x(2+cosx).
令f′(x)=0,得x=0.
列表如下:
 
∴函数f(x)在区间(-∞,0)上单调递减,
在区间(0,+∞)上单调递增,
∴f(0)=1是f(x)的最小值;
(2)∵曲线y=f(x)在点(a,f(a))处与直线y=b相切,
∴f′(a)=a(2+cosa)=0,b=f(a),
解得a=0,b=f(0)=1.
点评:本题考查的知识点是导数在最大值、最小值问题中的应用,导数法研究曲线的切线,是导数较为综合的应用,难度中档.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知定义域为R的函数f(x)满足:①f(1)=1,②?x∈R,f(x+5)≥f(x)+5,f(x+1)≤f(x)+1,则f(2013)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知g(x)=ax+a,f(x)=
2x-1,0≤x≤2
-x2,-2≤x<0
,对?x1∈[-2,2],?x2∈[-2,2],使g(x1)=f(x2)成立,则a的取值范围是(  )
A、[-1,+∞)
B、[-1,1]
C、(0,1]
D、(-∞,1]

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,为函数f(x)=Asin(ωx+ϕ)+b图象的一部分.根据图象:
(1)求出函数f(x)的解析式;
(2)写出f(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知y=kx+6k
1-x
+m在-3≤x≤0的最大值为4,最小值为-5,求k,m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
m
=(2cosx+2
3
sinx,1),
n
=(cosx,-y),且满足
m
n
=0.
(Ⅰ)将y表示为x的函数f(x),并写出f(x)的对称轴及对称中心;
(Ⅱ)已知a,b,c分别为△ABC的三个内角A、B、C对应的边长,若f(x)≤f(
A
2
)对所有x∈R恒成立,且a=4,求b+c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

某高校自主招生中,体育特长生的选拔考试,篮球项目初试办法规定:每位考生定点投篮,投进2球立刻停止,但投篮的总次数不能超过5次,投篮时间不能超过半分钟.某考生参加了这项测试,他投篮的命中率为0.8,假设他各次投篮之间互不影响.若记投篮的次数为ξ,求ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

把一颗骰子投掷两次,第一次出现的点数记为a,第二次出现的点数记为b.已知直线l1:x+2y=2,直线l2:ax+by=4,试求:直线l1、l2相交的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

log369+log612=
 

查看答案和解析>>

同步练习册答案