精英家教网 > 高中数学 > 题目详情
一位牧民计划用篱笆为他的马群围一个面积为1 600 m2的矩形牧场,由于受自然环境的影响,矩形的一边不能超过a m,求用最少篱笆围成牧场后矩形的长与宽.
当a≥40时,矩形的长与宽都是40 m;
当0<a<40时,矩形的长与宽分别是a m与 m.
设一边的长为x m,0<x≤a,则宽为 m,矩形的周长为W,
那么W=2(x+,则W=2
显然当=,即x=40时,
若a≥40时,周长W最小,其最小值为160,
此时,矩形的长与宽都是40 m.
若0<a<40时,由于函数W=2(x+在区间(0,a]上是减函数,则当x=a时,周长W最小,其最小值为2(a+,此时,矩形的长与宽分别是a m与 m.
故当a≥40时,矩形的长与宽都是40 m;
当0<a<40时,矩形的长与宽分别是a m与 m.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知为数列的前项和,且,(Ⅰ)求证:数列为等比数列;(Ⅱ)设,求数列的前项和;(Ⅲ)设,数列的前项和为,求证:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题





(1)企业要成为不亏损企业,每月至少生产多少台电机?
(2)当月总产值为多少时,企业亏损量严重,最大亏损额为多少?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

要使函数y=1+2x+4xa在x∈(-∞,1]上y>0恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

a为实常数,已知函数在区间[1,2]上是增函数,且在区间[0,1]上是减函数。
(Ⅰ)求常数的值;
(Ⅱ)设点P为函数图象上任意一点,求点P到直线距离的最小值;
(Ⅲ)若当时,恒成立,求的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

是方程的两个实根,则的最小值是多少?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)是y=-1(x∈R)的反函数,函数g(x)的图像
与函数y=-的图像关于y轴对称,设F(x)=f(x)+g(x).
(1)求函数F(x)的解析式及定义域;
(2)试问在函数F(x)的图像上是否存在两个不同的点AB,使直线AB恰好与y轴垂直?若存在,求出AB的坐标;若不存在,说明理由 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数,且的定义域为[-1,1]。
1)求值及函数的解析式;
2)若方程有解,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

方程的解所在区间一定是:
A.B.
C.D.

查看答案和解析>>

同步练习册答案