精英家教网 > 高中数学 > 题目详情
10.如图,已知DE是正△ABC的中位线,沿AD将△ABC折成直二面角B-AD-C,则翻折后异面直线AB与DE所成角的余弦值为(  )
A.$\frac{3}{4}$B.$\frac{2}{3}$C.$\frac{1}{2}$D.0

分析 以D为原点,DB为x轴,DC为y轴,DA为z轴,建立空间直角坐标系,利用向量法能求出翻折后异面直线AB与DE所称的余弦值.

解答 解:以D为原点,DB为x轴,DC为y轴,DA为z轴,建立空间直角坐标系,
设正△ABC的边长为2,
则A(0,0,$\sqrt{3}$),B(1,0,0),D(0,0,0),E(0,$\frac{1}{2}$,$\frac{\sqrt{3}}{2}$),
$\overrightarrow{AB}$=(1,0,-$\sqrt{3}$),$\overrightarrow{DE}$=(0,$\frac{1}{2}$,$\frac{\sqrt{3}}{2}$),
∴cos<$\overrightarrow{AB},\overrightarrow{DE}$>=$\frac{\overrightarrow{AD}•\overrightarrow{DE}}{|\overrightarrow{AD}|•|\overrightarrow{DE}|}$=$\frac{-\frac{3}{2}}{2•1}$=-$\frac{3}{4}$,
∴翻折后异面直线AB与DE所成角的余弦值为$\frac{3}{4}$.
故选:A.

点评 本题考查异面直线所成角的余弦值的求法,是基础题,解题时要认真审题,注意向量法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.设f(x)=3ax2+2bx+c,若a+b+c=0,f(0)>0,f(1)>0,求证:①a>0且-2<$\frac{a}{b}$<-1;②方程f(x)=0在(0,1)内有两个实数根.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=x+$\frac{a}{x}$-2,若x∈[2,+∞)恒有f(x)>1,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知过点P(6,0)的动直线与抛物线y2=4x交于A,B两点,O为原点,点C满足$\overrightarrow{OC}$•$\overrightarrow{PC}$=-7,则线段AC长度的最小值为$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.假设在10秒内的任何时刻,两条不相关的短信机会均等第进入同一部手机,若这两条短信进入手机的时间之差大于3秒,手机就会不受到干扰,则手机不受到干扰的概率为$\frac{49}{100}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.等差数列{an}的首项a1=1,公差d≠0,数列{bn}为等比数列,且b2=a2,b3=a5,b4=a14
(Ⅰ)求数列{an}和{bn}的通项公式;
(Ⅱ)设数列{cn}对任意n∈N*均有$\frac{{c}_{1}}{{b}_{1}}$+$\frac{{c}_{2}}{{b}_{2}}$+…+$\frac{{c}_{n}}{{b}_{n}}$=an成立,求c1+c2+…+cn(n≥2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=$\frac{a}{3}$x3-ax2+x+1在x=x1和x=x2处有极值,且1<$\frac{{x}_{1}}{{x}_{2}}$≤5.
(1)求a的取值范围;
(2)当a取最大值时,存在t∈R,使得x∈[1,m](m>1),f′(t-x)≤$\frac{36}{5}$x-$\frac{4}{5}$恒成立,求m的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.求证:f(x)=x+$\frac{{a}^{2}}{x}$(a∈R+)在区间(0,a]上是减函数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.以圆锥曲线的焦点弦AB为直径作圆,与相应准线l有两个不同的交点,求证:
①这圆锥曲线一定是双曲线;
②对于同一双曲线,l截得圆弧的度数为定值.

查看答案和解析>>

同步练习册答案