精英家教网 > 高中数学 > 题目详情
20.以圆锥曲线的焦点弦AB为直径作圆,与相应准线l有两个不同的交点,求证:
①这圆锥曲线一定是双曲线;
②对于同一双曲线,l截得圆弧的度数为定值.

分析 ①QH⊥ST,|AB|>2|QH|,2|QH|=|AA1|+|BB1|=$\frac{AF}{e}$+$\frac{BF}{e}$=$\frac{AB}{e}$,可得e>1,这圆锥曲线一定是双曲线;
②对于同一双曲线,cos∠SQH=$\frac{QH}{QS}$=$\frac{2QH}{2QF}$=$\frac{A{A}_{1}+B{B}_{1}}{AB}$=$\frac{1}{e}$为定值,即可证明l截得圆弧的度数为定值.

解答 证明:①如图:QH⊥ST,|AB|>2|QH|,
2|QH|=|AA1|+|BB1|=$\frac{AF}{e}$+$\frac{BF}{e}$=$\frac{AB}{e}$,
所以e>1,
所以圆锥曲线为双曲线.
②cos∠SQH=$\frac{QH}{QS}$=$\frac{2QH}{2QF}$=$\frac{A{A}_{1}+B{B}_{1}}{AB}$=$\frac{1}{e}$为定值,
所以弧ST的度数为定值.

点评 本题考查圆锥曲线的性质,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.如图,已知DE是正△ABC的中位线,沿AD将△ABC折成直二面角B-AD-C,则翻折后异面直线AB与DE所成角的余弦值为(  )
A.$\frac{3}{4}$B.$\frac{2}{3}$C.$\frac{1}{2}$D.0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图为定义在R上的函数y=f(x)的图象,借助图象解不等式xf(x)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知在正方体ABCD-A1B1C1D1中,M、N分别是AA1和BB1的中点,求异面直线CM和D1N所成的角?求异面直线A1M和D1N所成的角?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知一个正方体的各顶点都在同一个球面上,现用一个平面去截这个球和正方体,得到的截面图形刚好是一个圆及内接正三角形.若此正三角形的边长为a,则这个球的表面积为 (  )
A.$\frac{3}{4}π{a}^{2}$B.3πa2C.6πa2D.$\frac{3}{2}π{a}^{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.函数y=xsinx+cosx(0<x<2π)的递增区间是(0,$\frac{π}{2}$)和($\frac{3π}{2}$,2π).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=$\frac{-{2}^{x}+1}{{2}^{x}+1}$.
(1)判断并证明函数f(x)的单调性;
(2)若f(32a+1)<f(($\frac{1}{3}$)4-a),求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知a>0,且a≠1,f(x)=1-$\frac{2}{1+{a}^{x}}$,x∈R.
(1)判断f(x)的奇偶性;
(2)求不等式f(x)>f(-x)的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知函数f(x)=$\left\{\begin{array}{l}{-{x}^{2}+\frac{5}{2}x-1,x<0}\\{{e}^{x},x≥0}\end{array}\right.$,若|f(x)|≥ax+1,则实数a的取值范围是$[-\frac{5}{2},1]$.

查看答案和解析>>

同步练习册答案