精英家教网 > 高中数学 > 题目详情
5.方程组$\left\{\begin{array}{l}{\frac{1}{x}+\frac{1}{y}=5}\\{xy=\frac{1}{6}}\end{array}\right.$的解是$\left\{\begin{array}{l}{x=\frac{1}{2}}\\{y=\frac{1}{3}}\end{array}\right.$或$\left\{\begin{array}{l}{x=\frac{1}{3}}\\{y=\frac{1}{2}}\end{array}\right.$.

分析 化简方程组可得$\left\{\begin{array}{l}{x+y=\frac{5}{6}}\\{xy=\frac{1}{6}}\end{array}\right.$,从而解得.

解答 解:∵$\left\{\begin{array}{l}{\frac{1}{x}+\frac{1}{y}=5}\\{xy=\frac{1}{6}}\end{array}\right.$,
∴$\left\{\begin{array}{l}{x+y=\frac{5}{6}}\\{xy=\frac{1}{6}}\end{array}\right.$,
解得,$\left\{\begin{array}{l}{x=\frac{1}{2}}\\{y=\frac{1}{3}}\end{array}\right.$或$\left\{\begin{array}{l}{x=\frac{1}{3}}\\{y=\frac{1}{2}}\end{array}\right.$;
故答案为:$\left\{\begin{array}{l}{x=\frac{1}{2}}\\{y=\frac{1}{3}}\end{array}\right.$或$\left\{\begin{array}{l}{x=\frac{1}{3}}\\{y=\frac{1}{2}}\end{array}\right.$.

点评 本题考查了方程组的求解方法,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.下列命题中,错误的个数有(  )个
①平行于同一条直线的两个平面平行.
②平行于同一个平面的两个平面平行.
③一个平面与两个平行平面相交,交线平行.
④一条直线与两个平行平面中的一个相交,则必与另一个平面相交.
A.0个B.1个C.2个D.3个

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知在△ABC中,∠A=60°,b=2,a=$\sqrt{3}$,则c=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知M={a,b},N={x|x⊆M},则M与N的关系是(  )
A.M∈NB.M⊆NC.N∈MD.N⊆M

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.集合A={x|x2-3x+2=0,x∈R},集合B={x|2x2-ax+2=0,x∈R},若A∪B=A,求实数a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知x2+$\frac{1}{{x}^{2}}$=3,求$\frac{x-1}{x+1}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.(1)利用关系式logaN=b?ab=N证明换底公式:
logaN=$\frac{{log}_{m}N}{{log}_{m}a}$;
(2)利用(1)中的换底公式求下式的值:
log225•log34•log59
(3)利用(1)中的换底公式证明:
logab•logbc•logca=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.在等差数列{an}中,a1+a3+a5+…+am=24,a2+a4+…+am-1=18,且m为奇数,则m为7.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若函数f(x)=$\frac{4x}{x+1}$,g(x)=$\frac{1}{2}$(|x-a|-|x-b|),a<b,?x1≥0,?x2≤x1,使得g(x2)=f(x1),则2a+b的最大值为-7.

查看答案和解析>>

同步练习册答案