精英家教网 > 高中数学 > 题目详情
10.(-5)-2=$\frac{1}{25}$;${log_{\frac{1}{3}}}\sqrt{3}$=$-\frac{1}{2}$.

分析 直接利用有理指数幂以及对数运算法则化简求解即可.

解答 解:(-5)-2=$\frac{1}{25}$;   ${log_{\frac{1}{3}}}\sqrt{3}$=-$lo{g}_{3}\sqrt{3}$=$-\frac{1}{2}$.
故答案为:$\frac{1}{25}$;$-\frac{1}{2}$.

点评 本题考查对数运算法则以及有理指数幂的运算法则的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.判断下面命题的真值“|x︳>0”(  )
A.假命题B.真命题C.不是命题D.可真可假

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知函数f(x)满足f(x)=f(π-x),且当$x∈(-\frac{π}{2},\frac{π}{2})$时,f(x)=x+sinx,设a=f(1),b=f(2),c=f(3),则a、b、c的大小关系是b>a>c.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.定义:对于函数f(x),若存在非零常数M,T,使函数f(x)对于定义域内的任意实数x,都有f(x+T)-f(x)=M,则称函数f(x)是广义周期函数,其中称T为函数f(x)的广义周期,M称为周距.
(1)证明函数f(x)=x+(-1)x(x∈Z)是以2为广义周期的广义周期函数,并求出它的相应周距M的值;
(2)设函数y=g(x)是周期T=2的周期函数(即满足g(x+2)=g(x)),当函数f(x)=-2x+g(x)在[1,3]上的值域为[-3,3]时,求f(x)在[-9,9]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.函数$f(x)=\frac{1}{x}ln(\sqrt{6-x-{x^2}}+\sqrt{{x^2}-2x})$的定义域为(  )
A.[-3,0]B.[-3,0)C.[-3,0)∪{2}D.[-3,0]∪{2}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.函数$y={log_{\frac{1}{3}}}(3+2x-{x^2})$的递增区间为(  )
A.[1,+∞)B.(-1,1]C.(-∞,1]D.[1,3)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设集合A={(x,y)|x+y=1},B={(x,y)|2x-y=-4},则A∩B=(  )
A.{x=-1,y=2}B.(-1,2)C.{-1,2}D.{(-1,2)}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.试分别用两种方法证明:|sinα|+|cosα|≥1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若不等式-2x2+bx+1>0的解集$\{x|-\frac{1}{2}<x<m\}$,则b,m值是(  )
A.1,1B.1,-1C.-1,1D.-1,-1

查看答案和解析>>

同步练习册答案