【题目】设关于
的一元二次方程
.
(1)若
是从
四个数中任取的一个数,
是从
三个数中任取的一个数,求上述方程有两个不等实根的概率.
(2)若
是从区间
任取的一个数,
是从区间
任取的一个数,求上述方程有实根的概率.
【答案】(1)
;(2)![]()
【解析】
试题(1)本题是一个古典概型,由分布计数原理知基本事件共12个,方程
有实根的充要条件为
,满足条件的事件中包含6个基本事件,由古典概型公式得到事件
发生的概率,同理可得出事件
发生的概率,最后利用互斥事件的加法公式即可求出结果;
(2)本题是一个几何概型,试验的全部约束所构成的区域为
,构成事件
的区域为
,根据几何概型公式可求得结果.
试题解析:设事件A为“方程有实根”.
当a>0,b>0时,方程有实根的充要条件为a>b
(1)由题意知本题是一个古典概型,试验发生包含的基本事件共12个:
(1,0)(1,1)(1,2)(2,0)(2,1)(2,2)(3,0)(3,1)(3,2)
(4,0)(4,1)(4,2)
其中第一个数表示a的取值,第二个数表示b的取值.
事件A中包含9个基本事件,
∴事件A发生的概率为![]()
(2)由题意知本题是一个几何概型,
试验的全部结束所构成的区域为{(a,b)|1≤a≤4,0≤b≤2}
满足条件的构成事件A的区域为{(a,b)|1≤a≤4,0≤b≤2,a≥b}
∴所求的概率是![]()
科目:高中数学 来源: 题型:
【题目】下列说法中正确的有( )
A.将一组数据中的每一个数据都加上或减去同一个常数后,方差不变;
B.设有一个线性回归方程
,变量
增加1个单位时,
平均增加5个单位;
C.设具有相关关系的两个变量
,
的相关系数为
,则
越接近于0,
和
之间的线性相关程度越弱;
D.在一个
列联表中,由计算得
的值,在
的前提下,
的值越大,判断两个变量间有关联的把握就越大.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列四个结论中正确的个数是
(1)对于命题
使得
,则
都有
;
(2)已知
,则 ![]()
(3)已知回归直线的斜率的估计值是2,样本点的中心为(4,5),则回归直线方程为
;
(4)“
”是“
”的充分不必要条件.
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,圆
的参数方程为
(
为参数),以直角坐标系的原点
为极点,
轴正半轴为极轴建立极坐标系.
(1)求圆
的极坐标方程;
(2)设曲线
的极坐标方程为
,曲线
的极坐标方程为
,求三条曲线
,
,
所围成图形的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知△ABC的两个顶点A,B的坐标分别为(
,0),(
,0),圆E是△ABC的内切圆,在边AC,BC,AB上的切点分别为P,Q,R,|CP|=2
,动点C的轨迹为曲线G.
(1)求曲线G的方程;
(2)设直线l与曲线G交于M,N两点,点D在曲线G上,
是坐标原点
,判断四边形OMDN的面积是否为定值?若为定值,求出该定值;如果不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线L:
(
)的焦点为F,过点
的动直线l与抛物线L交于A,B两点,直线
交抛物线L于另一点C,直线
的最小值为4.
![]()
(1)求椭圆C的方程;
(2)若过点A作y轴的垂线m,则x轴上是否存在一点
,使得直线PB与直线m的交点恒在一条定直线上?若存在,求该点的坐标及该定直线的方程;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com