精英家教网 > 高中数学 > 题目详情

(本小题满分12分)计算:
(Ⅰ)
(Ⅱ)  

(1)原式=-3; (2)1.  

解析试题分析: (I)根据分数指数幂与根式的互化公式:,以及分数指数幂的运算法则:,则;;,直接计算即可.
(II)根据对数的运算法则:
计算即可.
(1)原式=;       
考点:分数指数幂与根式的互化,指数与对数的运算法则.
点评:掌握分数指数幂与根式的互化公式以及指数与对数的运算法则是解本小题的关键.要注意加强公式及法则的记忆,另外要注意常见结论:.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本题满分12分)已知二次函数的图像过点,且
(Ⅰ)求的解析式;
(Ⅱ)若数列满足,且,求数列的通项公式;
(Ⅲ)记,数列的前项和,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2013年全国第十二届全运会由沈阳承办。城建部门计划在浑南新区建造一个长方形公园ABCD,公园由长方形的休闲区A1B1C1D1(阴影部分)和环公园人行道组成。已知休闲区A1B1C1D1的面积为4000平方米,人行道的宽分别为4米和10米。
(1)若设休闲区的长米,求公园ABCD所占面积S关于的函数的解析式;
(2)要使公园所占面积最小,休闲区A1B1C1D1的长和宽该如何设计?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)设某物体一天中的温度是时间的函数:,其中温度的单位是,时间单位是小时,表示12:00,取正值表示12:00以后.若测得该物体在8:00的温度是,12:00的温度为,13:00的温度为,且已知该物体的温度在8:00和16:00有相同的变化率.
(1)写出该物体的温度关于时间的函数关系式;
(2)该物体在10:00到14:00这段时间中(包括10:00和14:00),何时温度最高,并求出最高温度;
(3)如果规定一个函数在区间上的平均值为,求该物体在8:00到16:00这段时间内的平均温度.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知函数
(1)      判断函数的奇偶性,并证明;
(2) 判断的单调性,并说明理由。(不需要严格的定义证明,只要说出理由即可)
(3) 若,方程是否有根?如果有根,请求出一个长度为1的区间,使;如果没有,请说明理由。(注:区间的长度=

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)(1)求值:
(2)解不等式:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分13分)(Ⅰ)若,求实数的取值范围;
(Ⅱ)二次函数,满足,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(10分)某公司生产一种电子仪器的固定成本为20000元,每生产一台仪器需增加投入100元,已知总收益满足函数:
R(x)=.
其中x是仪器的月产量.
(1)将利润表示为月产量的函数f(x);
(2)当月产量为何值时,公司所获利润最大?最大利润为多少元?(总收益=总成本+利润)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知是二次函数,不等式的解集是在区间上的最大值是12.
(Ⅰ)求的解析式;
(Ⅱ)是否存在自然数使得方程在区间内有且只有两个不等的实数根?若存在,求出的集合;若不存在,说明理由.

查看答案和解析>>

同步练习册答案