精英家教网 > 高中数学 > 题目详情

(本小题满分12分)已知函数
(1)      判断函数的奇偶性,并证明;
(2) 判断的单调性,并说明理由。(不需要严格的定义证明,只要说出理由即可)
(3) 若,方程是否有根?如果有根,请求出一个长度为1的区间,使;如果没有,请说明理由。(注:区间的长度=

(1) 为奇函数,证明:见解析;
(2)时,单调递增;单调递减。
(3)方程有根

解析试题分析:(1)根据f(-x)=-f(x)可知此函数是奇函数。
(2)      分a>1和0<a<1两种情况研究即可。a>1时,是两个增函数的和,0<a<1时,是两个减函数的和。
从而确定其单调性与底数a有关系。
(3) 当,又,再令,
然后判断g(-1),g(0)的值,从而判断y=g(x)在(-1,0)上是否存在零点,从而达到证明f(x)=x+1是否在(-1,0)上有根的目的。
(1)   为奇函数……………………1分
证明:∵的定义域为R,关于原点对称  …………………2分
…………………………………………3分
所以可知为奇函数……………………………………………4分
(2) ∵
① 当时,单调递增,单调递减,
所以单调递增…………………………………………………6分
②当时,单调递减,单调递增,
所以单调递减。
综上可知时,单调递增;单调递减。
………………………………………………8分
(3)当,又
…………………………………9分
………………………………………………10分
,故存在零点
即方程有根……………………………………………12分
考点:函数的单调性,奇偶性,函数的零点与方程的根的关系。
点评:掌握判断函数奇偶性的方法:一要看定义域是否关于原点对称,二要看f(-x)与f(x)的关系。
要掌握函数单调性的定义,它是证明抽象函数单调性的依据。函数的零点与方程的根的关系要搞清楚,它是实现根与零点的判断转化的依据。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知函数是奇函数:
(1)求实数的值; 
(2)证明在区间上的单调递减
(3)已知且不等式对任意的恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

武汉市某地西瓜从2012年6月1日起开始上市。通过市场调查,得到西瓜种植成本Q(单位:元/kg)与上市时间t(单位:天)的数据如下表:

时间t
50
110
250
种植成本Q
150
108
150
求:1)根据上表数据,从下列函数中选取一个函数描述西瓜种植成本Q与上市时间t的变化关系。
Q=at+b,       Q=,       Q=      a,       Q=a.
2)利用你选取的函数,求西瓜种植成本最低时的上市天数及最低种植成本。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分13分)
计算下列各式的值:
(1);     (2) .

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)
已知二次函数的图象过点,且与轴有唯一的交点.(1)求的表达式;
(2)当时,求函数的最小值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)计算:
(Ⅰ)
(Ⅱ)  

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知二次函数最大值为,且
⑴求的解析式;
⑵求上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)某公司试销一种新产品,规定试销时销售单价不低于成本单价500元/件,又不高于800元/件,经试销调查,发现销售量y(件)与销售单价(元/件)之间,可近似看做一次函数的关系(图象如图所示).

(1)根据图象,求一次函数的表达式;
(2)设公司获得的毛利润(毛利润=销售总价-成本总价)为S元:
①求S关于的函数表达式;
②求该公司可获得的最大毛利润,并求出此时相应的销售单价.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

一次函数f(x),满足f(f(x))=2x-1,求一次函数f(x)的解析式 。(10分)

查看答案和解析>>

同步练习册答案