精英家教网 > 高中数学 > 题目详情

(本小题满分12分)
已知函数是奇函数:
(1)求实数的值; 
(2)证明在区间上的单调递减
(3)已知且不等式对任意的恒成立,求实数的取值范围.

(1);(2)见解析;(3).

解析试题分析:(Ⅰ)先根据f(1)=f(4)求出b的值;再结合f(x)+f(-x)=0对x≠0恒成立求出a的值即可;
(Ⅱ)直接按照单调性的证明过程来证即可;
(Ⅲ)先结合第二问的结论知道函数f(x)在(1,+∞)上递减,进而得到函数的不等式,最后把两个成立的范围相结合即可求出结论.
(1)由定义易得:
(2)设
所以上的单调递减。
(3)已知且不等式对任意的恒成立,求实数的取值范围.
为奇函数得:
因为,且在区间上的单调递减,
任意的恒成立,故.
考点:本题主要是考查函数奇偶性与单调性的综合.
点评:解决第一问的关键在于利用奇函数的定义得到f(x)+f(-x)=0对x≠0恒成立求出a的值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(满分12分)
某市居民生活用水标准如下:

用水量t(单位:吨)
每吨收费标准(单位:元)
不超过2吨部分
m
超过2吨不超过4吨部分
3
超过4吨部分
n
已知某用户1月份用水量为3.5吨,缴纳水费为7.5元;2月份用水量为6吨,缴纳水费为21元.设用户每月缴纳的水费为y元.
(1)写出y关于t的函数关系式;
(2)某用户希望4月份缴纳的水费不超过18元,求该用户最多可以用多少吨水?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知函数=(ex-1)。
(1)求的定义域;
(2)判断函数的增减性,并用定义法证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分13分)某市“环保提案”对某处的环境状况进行了实地调研,据测定,该处的污染指数与附近污染源的强度成正比,与到污染源的距离成反比,比例常数为.现已知相距两家化工厂(污染源)的污染强度分别为正数,,它们连线上任意一点C处的污染指数等于两化工厂对该处的污染指数之和.设.
(1) 试将表示为的函数;
(2) 若时,处取得最小值,试求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分15分)将进货单价为80元的商品按90元一个售出时,能卖出400个,已知这种商品每个涨价1元,其销售量就减少10个,为了取得最大利润,每个售价应定为多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)已知二次函数的图像过点,且
(Ⅰ)求的解析式;
(Ⅱ)若数列满足,且,求数列的通项公式;
(Ⅲ)记,数列的前项和,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12)
为了绿化城市,准备在如图所示的区域内修建一个矩形的草坪,并建立如图平面直角坐标系,且,另外的内部有一文物保护区不能占用,经测量, ,.
(1)求直线的方程;
(2)应如何设计才能使草坪的占地面积最大?并求最大面积。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分) 已知函数
(1)讨论函数在定义域内的极值点的个数;
(2)若函数处取得极值,对,恒成立,求实数的取值范围;
(3)当时,试比较的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知函数
(1)      判断函数的奇偶性,并证明;
(2) 判断的单调性,并说明理由。(不需要严格的定义证明,只要说出理由即可)
(3) 若,方程是否有根?如果有根,请求出一个长度为1的区间,使;如果没有,请说明理由。(注:区间的长度=

查看答案和解析>>

同步练习册答案