精英家教网 > 高中数学 > 题目详情
、已知对任意实数,有,且时,,则时(   )
A.B.
C.D.
B
解:∵对任意实数x,有f(-x)=-f(x),g(-x)=g(x),
∴f(x)为奇函数;g(x)为偶函数
∵x>0时,f′(x)>0,g′(x)>0
∴f(x)在(0,+,∞)上为增函数;g(x)在(0,+,∞)上为增函数
∴f(x)在(-∞,0)上为增函数;g(x)在(-∞,0)上为减函数
∴f′(x)>0;g′(x)<0
故答案为:B
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

、(本小题满分9分)已知函数处取得极值。(1)求函数的解析式;
(2)求函数的单调区间

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)已知函数y=f(x)在定义域(—1+∞)内满足f(o)=0,且f(x)= ,(f(x))是f(x)的导数)
(Ⅰ)求f(x)的表达式.
(Ⅱ)当a=1时,讨论f(x)的单调性
(Ⅲ)设h(x)=(ex—P)2+(x-P)2,证明:h(x)≥

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设函数 则    ?   ?
A.x=为f(x)的极大值点B.x=为f(x)的极小值点
C.x=2为 f(x)的极大值点D.x=2为 f(x)的极小值点

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数,已知是奇函数。
(Ⅰ)求的值。
(Ⅱ)求的单调区间与极值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

对于R上可导的函数,若满足,则必有(   )
A.    
C.      D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设函数是定义在R上的函数,其中的导函数为,满足
对于恒成立,则(    )
  
  

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
设函数
(Ⅰ)求的单调区间;
(Ⅱ)当时,设的最小值为恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

,函数的导函数为.
(Ⅰ)求的值,并比较它们的大小;
(Ⅱ)求函数的极值.

查看答案和解析>>

同步练习册答案