精英家教网 > 高中数学 > 题目详情

【题目】如图,函数y=2sin(πx+φ),x∈R(其中0≤φ≤ )的图象与y轴交于点(0,1).

(1)求φ的值.
(2)设P是图象上的最高点,M、N是图象与x轴的交点,求tan∠MPN的值.

【答案】
(1)解:∵函数y=2sin(πx+φ),x∈R(其中0≤φ≤ )的图象与y轴交于点(0,1),

∴2sinφ=1,解得φ=


(2)解:∵P是y=2sin(πx+ )图象上的最高点,M、N是图象与x轴的交点,

∴令2sin(πx+ )=2,解得x=

令2sin(πx+ )=0,解得x=﹣ 或x=

∴tan ∠MPN= =

tan∠MPN= = =


【解析】(1)把点(0,1)代入函数解析式,即可求出φ的值;(2)根据题意,求出tan ∠MPN的值,再利用二倍角计算tan∠MPN的值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}满足a2=0,a6+a8=﹣10.
(1)求数列{an}的通项公式;
(2)求数列{ }的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】解答题
(1)(1)已知命题p:|x2﹣x|≥6,q:x∈Z且“p且q”与“非q”同时为假命题,求x的值.
(2)已知p:x2﹣8x﹣20≤0,q:x2﹣2x+1﹣m2≤0(m>0),若¬p是¬q的必要而不充分条件,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2015男篮亚锦赛决赛阶段,中国男篮以连胜的不败成绩赢得第届亚锦赛冠军,同时拿到亚洲唯一张直通里约奥运会的入场券.赛后,中国男篮主力易建联荣膺本届亚锦赛(最有价值球员),下表是易建联在这场比赛中投篮的统计数据.

比分

易建联技术统计

投篮命中

罚球命中

全场得分

真实得分率

中国新加坡

中国韩国

中国约旦

中国哈萨克斯坦

中国黎巴嫩

中国卡塔尔

中国印度

中国伊朗

中国菲律宾

注:(1)表中表示出手次命中次;

(2)(真实得分率)是衡量球员进攻的效率,其计算公式为:

(1)从上述场比赛中随机选择一场,求易建联在该场比赛中超过的概率;

(2)我们把比分分差不超过分的比赛称为“胶着比赛”.为了考验求易建联在“胶着比赛”中的发挥情况,从“胶着比赛”中随机选择两场,求易建联在这两场比赛中至少有一场超过的概率;

(3)用来表示易建联某场的得分,用来表示中国队该场的总分,画出散点图如图所示,请根据散点图判断之间是否具有线性相关关系?结合实际简单说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某保险公司有一款保险产品的历史收益率(收益率=利润÷保费收入)的频率分布直方图如图所示:

(Ⅰ)试估计平均收益率;

(Ⅱ)根据经验,若每份保单的保费在20元的基础上每增加元,对应的销量(万份)与(元)有较强线性相关关系,从历史销售记录中抽样得到如下5组的对应数据:

据此计算出的回归方程为.

(i)求参数的估计值;

(ii)若把回归方程当作的线性关系,用(Ⅰ)中求出的平均收益率估计此产品的收益率,每份保单的保费定为多少元时此产品可获得最大收益,并求出该最大收益.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在锐角△ABC中,a,b,c分别为角A,B,C的对边,且4sin2 ﹣cos2A=
(1)求角A的大小;
(2)若BC边上高为1,求△ABC面积的最小值?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在边长为4的菱形中, ,点分别是的中点, ,沿翻折到,连接,得到如图的五棱锥,且

(1)求证: 平面(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥的底面是正方形, 底面 ,点 分别为棱 的中点。

(1)求证: 平面

(2)求证:平面平面

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】圆x2+y2=4的切线与x轴正半轴,y轴正半轴围成一个三角形,当该三角形面积最小时,切点为P(如图),双曲线C1 =1过点P且离心率为

(1)求C1的方程;
(2)若椭圆C2过点P且与C1有相同的焦点,直线l过C2的右焦点且与C2交于A,B两点,若以线段AB为直径的圆过点P,求l的方程.

查看答案和解析>>

同步练习册答案