精英家教网 > 高中数学 > 题目详情
函数的单调递减区间是 __________________.
因为函数,那么利用二次函数的性质可知,对称轴为x=1,那么函数的单调递减区间是,故答案为
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(10分)已知函数
(1)用分段函数的形式表示该函数;
(2)在坐标系中画出该函数的图像
(3)写出该函数的定义域,值域,奇偶性和单调区间(不要求证明)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(16分)已知函数是定义在上的奇函数,且当时,
(1)当时,求函数的解析式;
(2)若函数为单调递减函数;
①直接写出的范围(不必证明);
②若对任意实数恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数与函数的图象关于对称,
(1)若的最大值为       
(2)设是定义在上的偶函数,对任意的,都有,且当时,,若关于的方程在区间内恰有三个不同实根,则实数的取值范围是                

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题13分)已知函数f(x)= (a>0,x>0).
(1)求证:f(x)在(0,+∞)上是单调递增函数;
(2)若f(x)在[,2]上的值域是[,2],求a的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)
已知函数
⑴求证:上是增函数;
⑵求上的最大值及最小值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若定义运算*b)=则函数)的值域是(   )
A.(0,1 ]B.[1,+∞)C.(0.+∞)D.(-∞,+∞)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知定义域为的函数是奇函数.
(1)求的值;
(2)若对任意的,不等式恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设奇函数上是增函数,且,则不等式的解集为(   )
A.B.
C.D.

查看答案和解析>>

同步练习册答案