分析 由棱长都相等正四棱锥S-ABCD侧面积为16$\sqrt{3}$,求出棱长为4,设球心为O,四棱锥是S-ABCD,则五个几何体:O-SAB、O-SBC、O-SDC、O-SAD、O-ABCD的体积和等于整个四棱锥的体积,而这五个几何体的高都是球半径r,由此能求出该正四棱锥内切球的表面积.
解答 解:设棱长都相等正四棱锥S-ABCD的棱长为a,![]()
∵其侧面积为16$\sqrt{3}$,
∴4×($\frac{1}{2}×a×a×sin60°$)=16$\sqrt{3}$,
解得a=4,
过S作SE⊥平面ABCD,垂足为E,连结BE,
则BE=$\frac{1}{2}\sqrt{{4}^{2}+{4}^{2}}$=2$\sqrt{2}$,SE=$\sqrt{{4}^{2}-(2\sqrt{2})^{2}}$=2$\sqrt{2}$,
设球心为O,四棱锥是S-ABCD,
则五个几何体:O-SAB、O-SBC、O-SDC、O-SAD、O-ABCD的体积和等于整个四棱锥的体积,
而这五个几何体的高都是球半径r,
∴$4×(\frac{1}{3}×4\sqrt{3})×r+\frac{1}{3}×4×4×r$=$\frac{1}{3}×(4×4)×2\sqrt{2}$,
解得r=$\sqrt{6}-\sqrt{2}$,
该正四棱锥内切球的表面积为S=4π($\sqrt{6}-\sqrt{2}$)2=(32-16$\sqrt{3}$)π.
故答案为:(32-16$\sqrt{3}$)π.
点评 本题考查正四棱锥内切球的表面积的求法,涉及到正四棱锥、球等基础知识,考查推理论证能力、运算求解能力,考查函数与方程思想、化归与转化思想,是中档题.
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 4 | C. | 6 | D. | 8 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{3}$ | B. | $\frac{2π}{3}$ | C. | $\frac{5π}{6}$ | D. | $\frac{π}{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(3)>e2f(1) | B. | f(3)<ef(2) | C. | f(4)<e4f(0) | D. | f(4)<e5f(-1) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 学生编号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| 数学分数x | 60 | 65 | 70 | 75 | 80 | 85 | 90 | 95 |
| 物理分数y | 72 | 77 | 80 | 84 | 88 | 90 | 93 | 95 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -16 | B. | -8 | C. | 16 | D. | 8 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 畅销日天数 | 非畅销日天数 | 合计 | |
| 甲 | 50 | 50 | 100 |
| 乙 | 30 | 70 | 100 |
| 合计 | 80 | 120 | 200 |
| P(K2≥k0) | 0.050 | 0.010 | 0.001 |
| k0 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | b<a<c | B. | a<b<c | C. | b<c<a | D. | c<a<b |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com