精英家教网 > 高中数学 > 题目详情
9.班主任为了对本班学生的考试成绩进行分析,决定从全班25名男同学,15名女同学中随机抽取一个容量为8的样本进行分析.
(1)如果按性别比例分层抽样,可以得到多少个不同的样本?(只要求写出计算式即可,不
必计算出结果)
(2)随机抽取8位,他们的数学分数从小到大排序是:60,65,70,75,80,85,90,95,物理分数从
小到大排序是:72,77,80,84,88,90,93,95.
①若规定85分以上(包括85分)为优秀,求这8位同学中恰有3位同学的数学和物理分数均
为优秀的概率;
②若这8位同学的数学、物理分数事实上对应如表:
学生编号12345678
数学分数x6065707580859095
物理分数y7277808488909395
根据上表数据,由变量y与x的相关系数可知物理成绩y与数学成绩x之间具有较强的线性相关关系,现求y与x的线性回归方程(系数精确到0.01).
参考公式:回归直线的方程是:$\stackrel{∧}{y}$=bx+a,其中对应的回归估计值b=$\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y)}}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}}$,
参考数据:$\overline x=77.5$,$\overline y=84.875$,$\sum_{i=1}^8{{{({x_i}-\overline x)}^2}}$≈1050,$\sum_{i=1}^8{({x_i}-\overline x)({y_i}-\overline y)}$≈688,.

分析 (1)从25名男同学中选$\frac{25}{40}×8$位,从15名女同学中选$\frac{15}{40}×8$位,即可得出样本的种数.
(2)①从8为同学中恰有3为同学的数学与物理均为优秀,从物理的4个优秀分数中选3个与数学优秀分数对应,种数是${A}_{4}^{3}$,然后将剩下的5个数学分数和物理分数任意对应,种数是${A}_{5}^{5}$,根据乘法原理可得满足条件的种数,这8位同学的物理分数和数学分数分布对应的种数共有${A}_{8}^{8}$种,即可得出所求的概率.
②设y与x的线性回归方程是$\stackrel{∧}{y}$=bx+a,根据所给数据,可以计算出$b≈\frac{688}{1050}≈0.66$,a=84.875-0.66×77.5≈33.73,可得y与x的线性回归方程.

解答 解:(1)从25名男同学中选$\frac{25}{40}×8$=5位,从15名女同学中选$\frac{15}{40}×8$=3位.
可以得到${∁}_{25}^{5}$×${∁}_{15}^{3}$个不同的样本.
(2)①从8为同学中恰有3为同学的数学与物理均为优秀,从物理的4个优秀分数中选3个与数学优秀分数对应,种数是${A}_{4}^{3}$,然后将剩下的5个数学分数和物理分数任意对应,种数是${A}_{5}^{5}$,根据乘法原理可得:满足条件的种数是${A}_{4}^{3}{A}_{5}^{5}$,这8位同学的物理分数和数学分数分布对应的种数共有${A}_{8}^{8}$种,故所求的概率P=$\frac{{A}_{4}^{3}•{A}_{5}^{5}}{{A}_{8}^{8}}$=$\frac{1}{14}$.
②设y与x的线性回归方程是$\stackrel{∧}{y}$=bx+a,根据所给数据,可以计算出$b≈\frac{688}{1050}≈0.66$,a=84.875-0.66×77.5≈33.73,所以y与x的线性回归方程是$\stackrel{∧}{y}$=0.66x+33.73.

点评 本题考查了分层抽样、组合计算公式、乘法原理、古典概率计算公式、线性回归方程,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.有一段“三段论”,推理是这样的:指数函数y=ax(a>0,a≠1)是增函数,因为$y={(\frac{1}{2})^x}$是指数函数,所以$y={(\frac{1}{2})^x}$是增函数,以上推理中(  )
A.大前提错误B.小前提错误C.推理形式错误D.结论正确

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知复数z1,z2满足|z1-$\overline{{z}_{2}}$|=|1-z1z2||,则有(  )
A.|z1|<0且|z2|<1B.|z1|<1或|z2|<1C.|z1|=1且|z2|=1D.|z1|=1或|z2|=1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知方程$arctan\frac{x}{2}+arctan(2-x)=a$;
(1)若$a=\frac{π}{4}$,求$arccos\frac{x}{2}$的值;
(2)若方程有实数解,求实数a的取值范围;
(3)若方程在区间[5,15]上有两个相异的解α、β,求α+β的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知棱长都相等正四棱锥的侧面积为16$\sqrt{3}$,则该正四棱锥内切球的表面积为(32-16$\sqrt{3}$)π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在△ABC中,角A,B,C的对边分别为a,b,c,且c2-a2-b2=ab,则角C=(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{5π}{6}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在△ABC中,角A,B,C的对边分别为a,b,c,满足(2a-b)cosC-ccosB=0
(1)求角C的值;
(2)若三边a,b,c满足a+b=10,c=6,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.为捍卫钓鱼岛及其附属岛屿的领土主权,中国派出舰船“唐山号”、“石家庄号”和“邯郸号”在钓鱼岛领海巡航.某日,正巡逻在A处的“唐山号”突然发现来自P处的疑似敌舰的某信号,发现信号时“石家庄号”和“邯郸号”正分别位于如图所示的B、C两处,其中A在B的正东方向相距6海里处,C在B的北偏西30°方向相距4海里处.由于B、C比A距P更远,因此,4秒后B、C才同时发现这一信号(该信号的传播速度为每秒1海里),试确定疑似敌舰相对于A点“唐山号”的位置.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知复数z=$\frac{2+i}{1-2i}$,则$\overline{z}$=(  )
A.iB.-iC.1D.-1

查看答案和解析>>

同步练习册答案