精英家教网 > 高中数学 > 题目详情
19.已知复数z=$\frac{2+i}{1-2i}$,则$\overline{z}$=(  )
A.iB.-iC.1D.-1

分析 直接由复数代数形式的乘除运算化简复数z得答案.

解答 解:z=$\frac{2+i}{1-2i}$=$\frac{(2+i)(1+2i)}{(1-2i)(1+2i)}=\frac{5i}{5}=i$,
则$\overline{z}$=-i.
故选:B.

点评 本题考查了复数代数形式的乘除运算,考查了复数的基本概念,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.班主任为了对本班学生的考试成绩进行分析,决定从全班25名男同学,15名女同学中随机抽取一个容量为8的样本进行分析.
(1)如果按性别比例分层抽样,可以得到多少个不同的样本?(只要求写出计算式即可,不
必计算出结果)
(2)随机抽取8位,他们的数学分数从小到大排序是:60,65,70,75,80,85,90,95,物理分数从
小到大排序是:72,77,80,84,88,90,93,95.
①若规定85分以上(包括85分)为优秀,求这8位同学中恰有3位同学的数学和物理分数均
为优秀的概率;
②若这8位同学的数学、物理分数事实上对应如表:
学生编号12345678
数学分数x6065707580859095
物理分数y7277808488909395
根据上表数据,由变量y与x的相关系数可知物理成绩y与数学成绩x之间具有较强的线性相关关系,现求y与x的线性回归方程(系数精确到0.01).
参考公式:回归直线的方程是:$\stackrel{∧}{y}$=bx+a,其中对应的回归估计值b=$\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y)}}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}}$,
参考数据:$\overline x=77.5$,$\overline y=84.875$,$\sum_{i=1}^8{{{({x_i}-\overline x)}^2}}$≈1050,$\sum_{i=1}^8{({x_i}-\overline x)({y_i}-\overline y)}$≈688,.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知命题p:方程$\frac{x^2}{m}+\frac{y^2}{4-m}=1$表示焦点在x轴上的椭圆,命题q:(m-1)x2+(m-3)y2=1表示双曲线;若p∧q为真命题,则实数m的取值范围是2<m<3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.等差数列{an}的前n项和为Sn,已知a1-a5-a10-a15+a19=2,则S19的值为(  )
A.38B.-19C.-38D.19

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知a=2,$b={125^{\frac{1}{6}}}$,c=log47,则下列不等式关系成立的是(  )
A.b<a<cB.a<b<cC.b<c<aD.c<a<b

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设F1,F2是双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的两个焦点,点P在双曲线上,已知|PF1|是|PF2|和|F1F2|的等差中项,且∠F1PF2=120°,则该双曲线的离心率为(  )
A.1B.$\frac{3}{2}$C.$\frac{5}{2}$D.$\frac{7}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知变量x,y满足$\left\{\begin{array}{l}2x-y≤0\\ x-2y+3≥0\\ x≥0\end{array}\right.$,则z=8x•2y的最大值为(  )
A.33B.32C.35D.34

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知a∈R,则“a<3”是“|x+2|+|x-1|>a恒成立”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知实数x,y满足$\left\{\begin{array}{l}x-y+2≥0\\ x+y≥0\\ 5x-y-6≤0.\end{array}\right.$若z=x+my的最小值是-5,则实数m取值集合是(  )
A.{-4,6}B.$\left\{{-\frac{7}{4},6}\right\}$C.$\left\{{-4,-\frac{7}{4}}\right\}$D.$\left\{{-4,-\frac{7}{4},6}\right\}$

查看答案和解析>>

同步练习册答案