精英家教网 > 高中数学 > 题目详情
3.已知直线y=x+1交椭圆${x^2}+\frac{y^2}{2}=1$于A、B两点,则弦AB的长为(  )
A.$\frac{{\sqrt{2}}}{3}$B.$\frac{{2\sqrt{2}}}{3}$C.$\frac{{4\sqrt{2}}}{3}$D.$\sqrt{2}$

分析 根据已知直线方程与椭圆方程,联立方程组,利用韦达定理,即可求解弦AB的长.

解答 解:由题意联立方程可得:可得$\left\{\begin{array}{l}{x}^{2}+\frac{{y}^{2}}{2}=1\\ y=x+1\end{array}\right.$,
A(x1,y1)B(x2,y2),
消去y化简可得:3x2+2x-1=0,
解得x1=-1,代入直线方程可得:y1=0,
x2=$\frac{1}{3}$,代入直线方程可得:y2=$\frac{4}{3}$,
则弦AB的长:$\sqrt{{(\frac{1}{3}+1)}^{2}+{(\frac{4}{3}-0)}^{2}}$=$\frac{4\sqrt{2}}{3}$.
故选:C.

点评 本题主要考查了直线与椭圆的位置关系:相交,处理此类问题的一般方法是联立方程,通过方程的根与系数的关系进行求解.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.已知某几何体的三视图如图所示,其中俯视图中圆的直径为4,该几何体的体积为$\frac{16π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.椭圆$\frac{{x}^{2}}{36}$+$\frac{{y}^{2}}{9}$=1与直线x+2y+8=0相交于点P,Q,求|PQ|.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知a,b∈R,下列结论成立的是(  )
A.若a<b,则ac<bcB.若a<b,c<d,则ac<bd
C.若a<b<0,则$\frac{1}{a}$>$\frac{1}{b}$D.若a<b,则an<bn(n∈N*,n≥2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.下列四个命题中正确命题的个数是(  )
(1)若A,B为互斥事件,则P(A)+P(B)=1
(2)若A,B为互斥事件,则P(A)+P(B)≤1
(3)互斥事件不一定是对立事件,对立事件一定是互斥事件
(4)一人打靶时连续射击两次,事件“至少有一次中靶”的对立事件是“两次都不中靶”
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知椭圆的中心在原点,焦点在x轴上,且长轴为8,离心率为$\frac{\sqrt{3}}{2}$,求:
(1)椭圆的标准方程;
(2)求椭圆上的点到直线$x+2y-\sqrt{2}=0$的最大距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知等比数列{an}中,a1=2,a4=16.
(1)求数列{an}的通项公式an与前n项和Sn
(2)设等差数列{bn}中,b2=a2,b9=a5,求数列{bn}的通项公式bn与前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知抛物线C:y2=2px(p>0)的焦点与双曲线E:$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{5}$=1的一个焦点重合.
(1)求抛物线C的标准方程;
(2)若点P(4,2),直线l为双曲线E的左准线,点M为抛物线上任意一点,设d为M到直线l距离,求MP+d的最小值,并求取得最小值时M点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.cos35°cos70°-sin35°cos20°等于(  )
A.$\frac{\sqrt{6}+\sqrt{2}}{4}$B.-$\frac{\sqrt{6}+\sqrt{2}}{4}$C.$\frac{\sqrt{6}-\sqrt{2}}{4}$D.$\frac{\sqrt{2}-\sqrt{6}}{4}$

查看答案和解析>>

同步练习册答案