精英家教网 > 高中数学 > 题目详情
14.椭圆$\frac{{x}^{2}}{36}$+$\frac{{y}^{2}}{9}$=1与直线x+2y+8=0相交于点P,Q,求|PQ|.

分析 联立直线方程和椭圆方程,运用韦达定理和弦长公式,计算即可得到所求值.

解答 解:直线x+2y+8=0即为x=-8-2y,
代入椭圆方程$\frac{{x}^{2}}{36}$+$\frac{{y}^{2}}{9}$=1,
可得2y2+8y+7=0,
判别式为64-4×2×7=8>0,
设P(x1,y1),Q(x2,y2),
即有y1+y2=-4,y1y2=$\frac{7}{2}$,
则|PQ|=$\sqrt{1+(-2)^{2}}$•$\sqrt{({y}_{1}+{y}_{2})^{2}-4{y}_{1}{y}_{2}}$
=$\sqrt{5}$•$\sqrt{16-4×\frac{7}{2}}$=$\sqrt{10}$.

点评 本题考查直线和椭圆的位置关系,考查弦长公式的运用,考查运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.设函数f(x)=sin(ωx+ϕ),(ω>0,-π<ϕ<0)的两个相邻的对称中心分别为($\frac{π}{8}$,0),$(\frac{5π}{8},0)$
(1)求f(x)的解析式;
(2)求函数f(x)图象的对称轴方程;
(3)用五点法作出函数f(x)在[0,π]上的简图.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.△ABC中,已知3acosC=2ccosA,tanA=$\frac{1}{3}$,则B=$\frac{3π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设函数f(x)=cos(2x-$\frac{4π}{3}$)+2cos2x,
(Ⅰ)求f(x)的最大值,并写出使f(x)取最大值时x的集合;
(Ⅱ)已知△ABC中,角A、B、C的对边分别为a、b、c,若f(B+C)=$\frac{3}{2}$,b+c=2,a=1,求△ABC的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知函数y=f(x)是定义在上的奇函数,且当x>0时,f(x)=2x-1-3,则f(f(1))=(  )
A.1B.-1C.2D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.线段A1A2、B1B2分别是已知椭圆的长轴和短轴,F2是椭圆的一个焦点(|A1F2|>|A2F2|),若该椭圆的离心率为$\frac{{\sqrt{5}-1}}{2}$,则∠A1B1F2等于(  )
A.30°B.45°C.120°D.90°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.一个几何体的三视图如图所示,则该几何体的外接球的体积为(  )
A.$\frac{3π}{2}$B.$\frac{9π}{2}$C.$\frac{4π}{3}$D.$\frac{8π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知直线y=x+1交椭圆${x^2}+\frac{y^2}{2}=1$于A、B两点,则弦AB的长为(  )
A.$\frac{{\sqrt{2}}}{3}$B.$\frac{{2\sqrt{2}}}{3}$C.$\frac{{4\sqrt{2}}}{3}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知x>0,y>0,x+2y=1,则$\frac{1}{3x+4y}$+$\frac{1}{x+3y}$的最小值为$\frac{6}{5}$.

查看答案和解析>>

同步练习册答案