精英家教网 > 高中数学 > 题目详情
4.设函数f(x)=sin(ωx+ϕ),(ω>0,-π<ϕ<0)的两个相邻的对称中心分别为($\frac{π}{8}$,0),$(\frac{5π}{8},0)$
(1)求f(x)的解析式;
(2)求函数f(x)图象的对称轴方程;
(3)用五点法作出函数f(x)在[0,π]上的简图.

分析 (1)由题意可求周期T,利用周期公式可求ω,由点($\frac{π}{8}$,0)在函数图象上,可得$0=sin(\frac{π}{4}+ϕ)$,结合范围-π<ϕ<0,可求ϕ,从而可求f(x)的解析式;
(2)由$2x-\frac{π}{4}=\frac{π}{2}+kπ$,可解得f(x)对称轴方程.
(3)分别取2x-$\frac{π}{4}$=0、$\frac{π}{2}$、π、$\frac{3π}{2}$、2π,求出对应的x值和y值列表,然后描点,再用平滑曲线连接得函数图象.

解答 解:(1)∵f(x)的两个相邻的对称中心分别为$(\frac{π}{8},0)$,$(\frac{5π}{8},0)$,
∴$T=\frac{4π}{8}×2=\frac{π}{2}×2=\frac{2π}{ω}=π$,
∴ω=2,
∴由$0=sin(\frac{π}{4}+ϕ)$,可得:$\frac{π}{4}+ϕ=kπ$,解得:$ϕ=kπ-\frac{π}{4}$,
∵-π<ϕ<0,
∴$ϕ=-\frac{π}{4}$,
∴$f(x)=sin(2x-\frac{π}{4})$.
(2)∵由$2x-\frac{π}{4}=\frac{π}{2}+kπ$,可得$2x=\frac{3π}{4}+kπ$,k∈Z,
∴f(x)对称轴方程为$x=\frac{3π}{8}+\frac{kπ}{2},k∈Z$
(3)第一步:列表

x$\frac{π}{8}$$\frac{3π}{8}$$\frac{5π}{8}$$\frac{7π}{8}$$\frac{9π}{8}$
2x-$\frac{π}{4}$0$\frac{π}{2}$π$\frac{3π}{2}$
y=sin(2x-$\frac{π}{4}$)010-10
第二步:描点
第三步:连线画出图象如图所示:

点评 本题考查了y=Asin(ωx+φ)型函数的有关概念,考查了由y=Asin(ωx+φ)的部分图象确定其解析式,考查利用五点作图法作函数的图象,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.已知集合 P={x||x|>x},$Q=\left\{{x\left|{y=\sqrt{1-x}}\right.}\right\}$,则 P∩Q=(  )
A.(-∞,0)B.(0,1]C.(-∞,1]D.[0,1]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知:对任意x∈[0,1]都有$\sqrt{1-{x^2}}-cosωx≥0$成立,且ω>0则ω的取值范围为(  )
A.$[\frac{π}{4},\frac{π}{2}]$B.$(\frac{π}{4},\frac{π}{2}]$C.$[\frac{π}{2},\frac{3π}{2}]$D.$[\frac{π}{2},\frac{3π}{2})$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若圆x2+y2=4与圆x2+y2+ax-6=0(a>0)的公共弦的长为2$\sqrt{3}$,则a=±2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知空间直角坐标系o-xyz中的点A的坐标为(1,1,1),平面α过点A且与直线OA垂直,动点P(x,y,z)是平面α内的任一点,则点P的坐标满足的条件是x+y+z=3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.(x+2)5的展开式中含x3的项的系数是40.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知p:-x2+16x-60>0,$q:\frac{x-1}{{\sqrt{x+1}}}>0$,r:关于x的不等式x2-3ax+2a2<0(a∈R),若r是p的必要不充分条件,且r是q的充分不必要条件,试求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知某几何体的三视图如图所示,其中俯视图中圆的直径为4,该几何体的体积为$\frac{16π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.椭圆$\frac{{x}^{2}}{36}$+$\frac{{y}^{2}}{9}$=1与直线x+2y+8=0相交于点P,Q,求|PQ|.

查看答案和解析>>

同步练习册答案