精英家教网 > 高中数学 > 题目详情
9.(x+2)5的展开式中含x3的项的系数是40.(用数字作答)

分析 利用二项式展开式的通项公式,求出展开式中含x3项的系数即可.

解答 解:(x+2)5的展开式中通项公式是
T=${C}_{5}^{r}$•x5-r•2r
令5-r=3,解得r=2;
∴含x3的项的系数是
${C}_{5}^{2}$•22=40.
故答案为:40.

点评 本题考查了二项式展开式的通项公式的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.若直线l1:3x+y-3=0与l2:3x+my+1=0平行,则它们之间的距离为$\frac{2\sqrt{10}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知抛物线$y=\frac{1}{4}{x^2}$和$y=-\frac{1}{16}{x^2}+5$所围成的封闭曲线,给定点A(0,a),若在此封闭曲线上恰有三对不同的点,满足每一对点关于点A对称,则实数a的取值范围是$(\frac{5}{2},4)$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知向量序列:$\overrightarrow{a_1}$,$\overrightarrow{a_2}$,$\overrightarrow{a_3}$,…$\overrightarrow{a_n}$,…满足如下条件:$|{\overrightarrow{a_1}}|=2$,$|{\overrightarrow d}|=\frac{{\sqrt{2}}}{4}$,$2\overrightarrow{a_1}•\overrightarrow d=-1$,且$\overrightarrow{a_n}-\overrightarrow{{a_{n-1}}}=\overrightarrow d$(n=2,3,4,…),则$|{\overrightarrow{a_1}}|$,$|{\overrightarrow{a_2}}|$,$|{\overrightarrow{a_3}}|$,…,$|{\overrightarrow{a_n}}|$,…中第5项最小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设函数f(x)=sin(ωx+ϕ),(ω>0,-π<ϕ<0)的两个相邻的对称中心分别为($\frac{π}{8}$,0),$(\frac{5π}{8},0)$
(1)求f(x)的解析式;
(2)求函数f(x)图象的对称轴方程;
(3)用五点法作出函数f(x)在[0,π]上的简图.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,在棱长为a的正方体ABCD-A1B1C1D1中,M为A1D中点,N为AC中点.
(1)求异面直线MN和AB所成的角;
(2)求证:MN⊥AB1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.等比数列{an}前n项和为Sn=a+($\frac{1}{3}$)n,n∈N*,则$\lim_{n→∞}$(a1+a3+a5+…+a2n-1)=-$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.有4个命题:
(1)三点确定一个平面.
(2)梯形一定是平面图形.
(3)平行于同一条直线的两直线平行.
(4)垂直于同一直线的两直线互相平行.
其中正确命题的个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.线段A1A2、B1B2分别是已知椭圆的长轴和短轴,F2是椭圆的一个焦点(|A1F2|>|A2F2|),若该椭圆的离心率为$\frac{{\sqrt{5}-1}}{2}$,则∠A1B1F2等于(  )
A.30°B.45°C.120°D.90°

查看答案和解析>>

同步练习册答案