精英家教网 > 高中数学 > 题目详情
20.已知抛物线$y=\frac{1}{4}{x^2}$和$y=-\frac{1}{16}{x^2}+5$所围成的封闭曲线,给定点A(0,a),若在此封闭曲线上恰有三对不同的点,满足每一对点关于点A对称,则实数a的取值范围是$(\frac{5}{2},4)$.

分析 由图可知过两曲线的交点的直线与x轴的交点为(0,4),所以a<4.当对称的两个点分属两段曲线时,设其中一个点为(x1,$\frac{{{x}_{1}}^{2}}{4}$),则其对称点为(-x1,2a-$\frac{{{x}_{1}}^{2}}{4}$),将其代入曲线$y=-\frac{1}{16}{x^2}+5$,得到的关于x1的方程的解有且只有两个,进而可得结果.

解答 解:显然,过点A与x轴平行的直线与封闭曲线的两个交点关于点A对称,且这两个点在同一曲线上.
当对称的两个点分属两段曲线时,设其中一个点为(x1,y1),其中y1=$\frac{{{x}_{1}}^{2}}{4}$,且-4≤x1≤4,则其关于点A的对称点为(-x1,2a-y1),
所以这个点在曲线$y=-\frac{1}{16}{x^2}+5$上,
所以2a-y1=-$\frac{1}{16}$x12+5,即2a-$\frac{{{x}_{1}}^{2}}{4}$=-$\frac{1}{16}$x12+5,
所以2a=$\frac{3}{16}$x12+5,即$\frac{3}{16}$x12+5-2a=0,此方程的x1的解必须刚好有且只有两个,
当x1=4时,其对称点的横坐标刚好为-4,故x1≠±4,
于是-4<x1<4,且x1≠0,
∴2a=$\frac{3}{16}$x12+5∈(5,8),即$(\frac{5}{2},4)$.
故答案为:$(\frac{5}{2},4)$.

点评 本题考查点的对称性、一元二次方程根的判别式,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.如图,在正四棱柱(底面是正方形的直棱柱)ABCD-A1B1C1D1中,E是BC的中点,F是C1D的中点,P是棱CC1所在直线上的动点.则下列四个命题:
①CD⊥PE  
②EF∥平面ABC1  
③V${\;}_{P-{A}_{1}D{D}_{1}}$=V${\;}_{{D}_{1}-ADE}$
④过P可做直线与正四棱柱的各个面都成等角.
其中正确命题个数有(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知斜四棱柱ABCD-A1B1C1D1的各棱长均为2,∠A1AD=60°,∠BAD=90°,平面A1ADD1⊥平面ABCD,则异面直线BD1与AA1所成的角的余弦值为(  )
A.$\frac{\sqrt{3}}{4}$B.$\frac{\sqrt{13}}{4}$C.$\frac{\sqrt{39}}{13}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=x2-2ax+2
(1)当a=1时,写出f(x)的单调递减区间,并求值域;
(2)当a≥-1时,求f(x)在[-1,1]的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知:对任意x∈[0,1]都有$\sqrt{1-{x^2}}-cosωx≥0$成立,且ω>0则ω的取值范围为(  )
A.$[\frac{π}{4},\frac{π}{2}]$B.$(\frac{π}{4},\frac{π}{2}]$C.$[\frac{π}{2},\frac{3π}{2}]$D.$[\frac{π}{2},\frac{3π}{2})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.下列说法错误的是(  )
A.自变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系叫做相关关系
B.在线性回归分析中,相关系数r的值越大,变量间的相关性越强
C.在残差图中,残差点分布的带状区域的宽度越狭窄,其模型拟合的精度越高
D.在回归分析中,R2为0.98的模型比R2为0.80的模型拟合的效果好

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若圆x2+y2=4与圆x2+y2+ax-6=0(a>0)的公共弦的长为2$\sqrt{3}$,则a=±2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.(x+2)5的展开式中含x3的项的系数是40.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知:2y2-x2=1,求d=$\frac{|x-2y|}{\sqrt{5}}$的最小值.

查看答案和解析>>

同步练习册答案