精英家教网 > 高中数学 > 题目详情
11.已知斜四棱柱ABCD-A1B1C1D1的各棱长均为2,∠A1AD=60°,∠BAD=90°,平面A1ADD1⊥平面ABCD,则异面直线BD1与AA1所成的角的余弦值为(  )
A.$\frac{\sqrt{3}}{4}$B.$\frac{\sqrt{13}}{4}$C.$\frac{\sqrt{39}}{13}$D.$\frac{3}{4}$

分析 由AA1∥DD1,得∠BD1D(或其补角)是异面直线BD1与AA1所成的角,由此能求出异面直线BD1与AA1所成的角的余弦值.

解答 解:∵AA1∥DD1
∴∠BD1D(或其补角)是异面直线BD1与AA1所成的角,
∵DD1=2,BD=$\sqrt{A{B}^{2}+A{D}^{2}}$=2$\sqrt{2}$,
在菱形ADD1A1中,∵∠A1AD=60°,∴∠AA1D1=120°,
∵A1D1=AA1=2,∴$A{D}_{1}=2\sqrt{3}$,
又AB⊥AD,平面A1ADD1⊥平面ABCD,平面A1ADD1∩平面ABCD=AD,
∴AB⊥平面A1ADD1
∴BD1=$\sqrt{A{B}^{2}+A{{D}_{1}}^{2}}$=4,
∴cos∠BD1D=$\frac{16+4-8}{2×4×2}$=$\frac{3}{4}$.
故选:D.

点评 本题考查异面直线所成角的余弦值的求法,是中档题,解题时要认真审题,注意余弦定理的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.化简$\frac{2sin2α}{1+cos2α}$•$\frac{co{s}^{2}α}{cos2α}$=(  )
A.tanαB.tan2αC.1D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,在底面是矩形的四棱锥P-ABCD中,PA⊥底面ABCD,PA=AB=1,BC=2.
(1)求证:平面PDC⊥平面PAD;
(2)若E是PD的中点,求异面直线AE与PC所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若直线l1:3x+y-3=0与l2:3x+my+1=0平行,则它们之间的距离为$\frac{2\sqrt{10}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知点(sin$\frac{nπ}{2}$,an+$\frac{\sqrt{2}π}{4}$)在直线l:y=-$\sqrt{2}$x+$\frac{\sqrt{2}π}{4}$+2$\sqrt{2}$上,则数列{an}的前30项的和为59$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知$cos({60°}+α)=\frac{1}{3}$,且-180°<α<-90°,则cos(30°-α)的值为(  )
A.$-\frac{{2\sqrt{2}}}{3}$B.$\frac{{2\sqrt{2}}}{3}$C.$-\frac{{\sqrt{2}}}{3}$D.$\frac{{\sqrt{2}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知x,y满足约束条件,$\left\{\begin{array}{l}{y≤1}\\{x+y-2≥0}\\{x-y-1≤0}\end{array}\right.$,则目标函数z=2x-y的最大值为(  )
A.1B.3C.$\frac{5}{2}$D.$\frac{7}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知抛物线$y=\frac{1}{4}{x^2}$和$y=-\frac{1}{16}{x^2}+5$所围成的封闭曲线,给定点A(0,a),若在此封闭曲线上恰有三对不同的点,满足每一对点关于点A对称,则实数a的取值范围是$(\frac{5}{2},4)$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.等比数列{an}前n项和为Sn=a+($\frac{1}{3}$)n,n∈N*,则$\lim_{n→∞}$(a1+a3+a5+…+a2n-1)=-$\frac{3}{4}$.

查看答案和解析>>

同步练习册答案