| A. | $-\frac{{2\sqrt{2}}}{3}$ | B. | $\frac{{2\sqrt{2}}}{3}$ | C. | $-\frac{{\sqrt{2}}}{3}$ | D. | $\frac{{\sqrt{2}}}{3}$ |
分析 由cos(60°+α)的值及α的范围,判断出sin(60°+α)的正负,进而求出sin(60°+α)的值,原式变形后利用诱导公式化简即可求出值.
解答 解:∵cos(60°+α)=$\frac{1}{3}$,-180°<α<-90°,即-120°<α+60°<-30°,
∴sin(60°+α)<0,即sin(60°+α)=-$\sqrt{1-(\frac{1}{3})^{2}}$=-$\frac{2\sqrt{2}}{3}$,
则原式=cos[90°-(60°+α)]=sin(60°+α)=-$\frac{2\sqrt{2}}{3}$,
故选:A.
点评 此题考查了运用诱导公式化简求值,以及同角三角函数间的基本关系,熟练掌握诱导公式及基本关系是解本题的关键.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{3}}{4}$ | B. | $\frac{\sqrt{13}}{4}$ | C. | $\frac{\sqrt{39}}{13}$ | D. | $\frac{3}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 自变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系叫做相关关系 | |
| B. | 在线性回归分析中,相关系数r的值越大,变量间的相关性越强 | |
| C. | 在残差图中,残差点分布的带状区域的宽度越狭窄,其模型拟合的精度越高 | |
| D. | 在回归分析中,R2为0.98的模型比R2为0.80的模型拟合的效果好 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,+∞) | B. | $(0,\frac{3}{4})$ | C. | $(\frac{3}{4},+∞)$ | D. | $[0,\frac{3}{4})$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com