精英家教网 > 高中数学 > 题目详情
12.若圆x2+y2=4与圆x2+y2+ax-6=0(a>0)的公共弦的长为2$\sqrt{3}$,则a=±2.

分析 将两圆的方程相减,化简得ay-2=0,即为两圆的公共弦所在直线方程.再由两圆的公共弦长为2$\sqrt{3}$,根据垂径定理建立关于a的等式,解之即可得到实数a的值.

解答 解:圆x2+y2=4的圆心为原点O,半径r=2.
将圆x2+y2=4与圆x2+y2+ay-6=0相减,
可得ay-2=0,即得两圆的公共弦所在直线方程为ay-2=0.
原点O到ay-2=0的距离d=|$\frac{2}{a}$|
设两圆交于点A、B,
由|AB|=2$\sqrt{3}$,根据垂径定理可得$\sqrt{4-\frac{4}{{a}^{2}}}$=$\sqrt{3}$,解之得a=±2.
故答案为:±2.

点评 本题给出两圆的公共弦长,求参数a之值.着重考查了圆的标准方程与圆的性质、圆与圆的位置关系等知识,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.如图,在底面是矩形的四棱锥P-ABCD中,PA⊥底面ABCD,PA=AB=1,BC=2.
(1)求证:平面PDC⊥平面PAD;
(2)若E是PD的中点,求异面直线AE与PC所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知x,y满足约束条件,$\left\{\begin{array}{l}{y≤1}\\{x+y-2≥0}\\{x-y-1≤0}\end{array}\right.$,则目标函数z=2x-y的最大值为(  )
A.1B.3C.$\frac{5}{2}$D.$\frac{7}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知抛物线$y=\frac{1}{4}{x^2}$和$y=-\frac{1}{16}{x^2}+5$所围成的封闭曲线,给定点A(0,a),若在此封闭曲线上恰有三对不同的点,满足每一对点关于点A对称,则实数a的取值范围是$(\frac{5}{2},4)$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.用反证法证明“a+b$\sqrt{2}$(a、b∈Z)是无理数”时,假设正确的是(  )
A.假设$\sqrt{2}$是有理数B.假设b$\sqrt{2}$(b∈Z)是有理数
C.假设a+$\sqrt{2}$(a∈Z)是有理数D.假设a+b$\sqrt{2}$(a、b∈Z)是有理数

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知向量序列:$\overrightarrow{a_1}$,$\overrightarrow{a_2}$,$\overrightarrow{a_3}$,…$\overrightarrow{a_n}$,…满足如下条件:$|{\overrightarrow{a_1}}|=2$,$|{\overrightarrow d}|=\frac{{\sqrt{2}}}{4}$,$2\overrightarrow{a_1}•\overrightarrow d=-1$,且$\overrightarrow{a_n}-\overrightarrow{{a_{n-1}}}=\overrightarrow d$(n=2,3,4,…),则$|{\overrightarrow{a_1}}|$,$|{\overrightarrow{a_2}}|$,$|{\overrightarrow{a_3}}|$,…,$|{\overrightarrow{a_n}}|$,…中第5项最小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设函数f(x)=sin(ωx+ϕ),(ω>0,-π<ϕ<0)的两个相邻的对称中心分别为($\frac{π}{8}$,0),$(\frac{5π}{8},0)$
(1)求f(x)的解析式;
(2)求函数f(x)图象的对称轴方程;
(3)用五点法作出函数f(x)在[0,π]上的简图.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.等比数列{an}前n项和为Sn=a+($\frac{1}{3}$)n,n∈N*,则$\lim_{n→∞}$(a1+a3+a5+…+a2n-1)=-$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设函数f(x)=cos(2x-$\frac{4π}{3}$)+2cos2x,
(Ⅰ)求f(x)的最大值,并写出使f(x)取最大值时x的集合;
(Ⅱ)已知△ABC中,角A、B、C的对边分别为a、b、c,若f(B+C)=$\frac{3}{2}$,b+c=2,a=1,求△ABC的面积的最大值.

查看答案和解析>>

同步练习册答案