分析 (1)求出函数f(x)的导数,问题转化为a≤lnx+$\frac{1}{x}$+1在(0,+∞)恒成立,(a>0),令g(x)=lnx+$\frac{1}{x}$+1,(x>0),根据函数的单调性求出a的范围即可;
(2)问题转化为(x-1)[(x+1)lnx-a]≥0恒成立,通过讨论x的范围,结合函数的单调性求出a的范围即可.
解答 解:(1)f(x)=(x+l)lnx-ax+a,f′(x)=lnx+$\frac{1}{x}$+1-a,
若f(x)在(0,+∞)上单调递增,
则a≤lnx+$\frac{1}{x}$+1在(0,+∞)恒成立,(a>0),
令g(x)=lnx+$\frac{1}{x}$+1,(x>0),
g′(x)=$\frac{x-1}{{x}^{2}}$,
令g′(x)>0,解得:x>1,令g′(x)<0,解得:0<x<1,
故g(x)在(0,1)递减,在(1,+∞)递增,
故g(x)min=g(1)=2,
故0<a≤2;
(2)若不等式(x-1)f(x)≥0恒成立,
即(x-1)[(x+1)lnx-ax+a]≥0恒成立,
当0<a≤2时,由(1)知,当x∈(0,﹢∞)时,f(x)单调递增.
又f(1)=0,当x∈(0,1),f(x)<0;当x∈(1,﹢∞)时,f(x)>0,故不等式(x-1)f(x)≥0恒成立.
若a>2,对f(x)二次求导,令二次导函数=0,得到x0>1,当x∈(1,x0)时,f(x)单调递减,
∴当x∈(1,x0)时,f(x)<f(1)=0,此时(x-1)f(x)<0,矛盾,
综上所述,0<a≤2.
点评 本题考查了函数的单调性、最值问题,考查导数的应用以及分类讨论思想、转化思想,考查函数恒成立问题,是一道中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,3] | B. | (-∞,2] | C. | (-∞,1] | D. | [1,3] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{5}{2}$ | B. | $\frac{5}{3}$ | C. | $\frac{5}{4}$ | D. | 1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | p∨q | B. | p∧(¬q) | C. | (¬p)∧q | D. | (¬p)∨(¬q) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com