精英家教网 > 高中数学 > 题目详情
15.己知函数f(x)=(x+l)lnx-ax+a (a为正实数,且为常数)
(1)若f(x)在(0,+∞)上单调递增,求a的取值范围;
(2)若不等式(x-1)f(x)≥0恒成立,求a的取值范围.

分析 (1)求出函数f(x)的导数,问题转化为a≤lnx+$\frac{1}{x}$+1在(0,+∞)恒成立,(a>0),令g(x)=lnx+$\frac{1}{x}$+1,(x>0),根据函数的单调性求出a的范围即可;
(2)问题转化为(x-1)[(x+1)lnx-a]≥0恒成立,通过讨论x的范围,结合函数的单调性求出a的范围即可.

解答 解:(1)f(x)=(x+l)lnx-ax+a,f′(x)=lnx+$\frac{1}{x}$+1-a,
若f(x)在(0,+∞)上单调递增,
则a≤lnx+$\frac{1}{x}$+1在(0,+∞)恒成立,(a>0),
令g(x)=lnx+$\frac{1}{x}$+1,(x>0),
g′(x)=$\frac{x-1}{{x}^{2}}$,
令g′(x)>0,解得:x>1,令g′(x)<0,解得:0<x<1,
故g(x)在(0,1)递减,在(1,+∞)递增,
故g(x)min=g(1)=2,
故0<a≤2;
(2)若不等式(x-1)f(x)≥0恒成立,
即(x-1)[(x+1)lnx-ax+a]≥0恒成立,
当0<a≤2时,由(1)知,当x∈(0,﹢∞)时,f(x)单调递增.
又f(1)=0,当x∈(0,1),f(x)<0;当x∈(1,﹢∞)时,f(x)>0,故不等式(x-1)f(x)≥0恒成立.
若a>2,对f(x)二次求导,令二次导函数=0,得到x0>1,当x∈(1,x0)时,f(x)单调递减,
∴当x∈(1,x0)时,f(x)<f(1)=0,此时(x-1)f(x)<0,矛盾,
综上所述,0<a≤2.

点评 本题考查了函数的单调性、最值问题,考查导数的应用以及分类讨论思想、转化思想,考查函数恒成立问题,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.函数f(x)=ax2+(b-2a)x-2b为偶函数,且在(0,+∞)单调递减,则f(x)>0的解集为{x|-2<x<2}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.我国古代数学著作《九章算术》有如下问题:“今有人持金出五关,前关二税一,次关三而税一,次关四而税一,次关五而税一,次关六而税一,并五关所税,适重一斤.问本持金几何”其意思为“今有人持金出五关,第1关收税金$\frac{1}{2}$,第2关收税金$\frac{1}{3}$,第3关收税金$\frac{1}{4}$,第4关收税金$\frac{1}{5}$,第5关收税金$\frac{1}{6}$,5关所收税金之和,恰好1斤重,设这个人原本持金为x,按此规律通过第8关,”则第8关需收税金为$\frac{1}{72}$x.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.函数y=f(x)图象上不同两点A(x1,y1),B(x2,y2)处的切线的斜率分别是kA,kB,规定φ(A,B)=$\frac{|{k}_{A}-{k}_{B}|}{|AB|}$叫做曲线在点A与点B之间的“弯曲度”.设曲线y=ex上不同的两点A(x1,y1),B(x2,y2),且x1-x2=1,若t•φ(A,B)<3恒成立,则实数t的取值范围是(  )
A.(-∞,3]B.(-∞,2]C.(-∞,1]D.[1,3]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.函数f(x)=$\frac{1}{ln(4x-3)}$的定义域为{x|x>$\frac{3}{4}$且x≠1}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知变量x,y满足$\left\{\begin{array}{l}{x-2y+4≥0}\\{x≤2}\\{x+y-2≥0}\end{array}\right.$则目标函数z=$\frac{x+y+3}{x+2}$的最大值为(  )
A.$\frac{5}{2}$B.$\frac{5}{3}$C.$\frac{5}{4}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设命题p:函数f(x)=ln$\frac{{e}^{x}+1}{{e}^{-x}+1}$为奇函数;命题q:?x0∈(0,2),x${\;}_{0}^{2}$>2${\;}^{{x}_{0}}$,则下列命题为假命题的是(  )
A.p∨qB.p∧(¬q)C.(¬p)∧qD.(¬p)∨(¬q)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.在三棱柱ABC-A1B1C1中,侧棱与底面垂直,BC=CC1,当底面△A1B1C1满足条件A1C1⊥C1B1时,有AB1⊥BC1.(注:填上你认为正确的一种条件即可,不必考虑所有可能的情况).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.“|x|+|y|≤1”是“x2+y2≤1”的(  )条件.
A.充分必要B.充分不必要
C.必要不充分D.既不充分也不必要

查看答案和解析>>

同步练习册答案