精英家教网 > 高中数学 > 题目详情
7.“|x|+|y|≤1”是“x2+y2≤1”的(  )条件.
A.充分必要B.充分不必要
C.必要不充分D.既不充分也不必要

分析 根据不等式的性质以及充分必要条件的定义判断即可.

解答 解:∵|x|+|y|≤1,
∴x2+y2+2|x||y|≤1,
∴x2+y2≤1,是充分条件,
而x2+y2≤1,推不出x2+y2+2|x||y|≤1,
也就推不出|x|+|y|≤1,不是必要条件,
故选:B.

点评 本题考查了充分必要条件,考查不等式的性质,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.己知函数f(x)=(x+l)lnx-ax+a (a为正实数,且为常数)
(1)若f(x)在(0,+∞)上单调递增,求a的取值范围;
(2)若不等式(x-1)f(x)≥0恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左右焦点分别为F1,F2,过点F1作垂直于x轴的直线交椭圆C于M,N两点,若|MN|=3,且椭圆C上的离心率为$\frac{1}{2}$.
(I)求椭圆C的方程;
(Ⅱ)若直线AB的方程为3x+ty-3=0,且与椭圆C交于A,B两点,证明:$\frac{1}{|A{F}_{2}|}$+$\frac{1}{|B{F}_{2}|}$是定值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设A={(x,y)|y=cos(arccosx)},B={(x,y)|y=arccos(cosx)},则A∩B=(  )
A.{(x,y)|y=x,-1≤x≤1}B.$\left\{{(x\;,\;\;y)\left|{y=x\;,\;\;-\frac{1}{2}≤x≤\frac{1}{2}}\right.}\right\}$
C.{(x,y)y=x,0≤x≤1}D.{(x,y)|y=x,0≤x≤π}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.点P从点(-1,0)出发,沿单位圆x2+y2=1顺时针方向运动$\frac{π}{3}$弧长到达Q点,则Q点的坐标为(-$\frac{1}{2}$,$\frac{\sqrt{3}}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若曲线 ${C_1}:y={x^2}$与曲线 ${C_2}:y=a{e^x}(a≠0)$存在唯一条公共切线,则a的取值范围为a<0或a=$\frac{4}{{e}^{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.对于任意实数x,符号[x]表示x的整数部分,即[x]是不超过x的最大整数,例如[2]=2,[2.1]=2,[-2.2]=-3,这个函数[x]叫做“取整函数”,它在数学本身和生产实践中有广泛的应用.已知函数f(x)(x∈R)满足f(x)=f(2-x),且当x≥1时,f(x)=log2x,那么[f(-16)]+[f(-15)]+…+[f(15)]+[f(16)]的值为84.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知椭圆E的左、右焦点分别为F1,F2,过F1且斜率为2的直线交椭圆E于P,Q两点,若$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}=0$,则椭圆E的离心率为(  )
A.$\frac{{\sqrt{5}}}{3}$B.$\frac{2}{3}$C.$\frac{{\sqrt{2}}}{3}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.下列函数中,图象的一部分如右图所示的是(  )
A.$y=sin({x+\frac{π}{6}})$B.$y=cos({2x-\frac{π}{6}})$C.$y=sin({2x-\frac{π}{6}})$D.$y=cos({4x-\frac{π}{3}})$

查看答案和解析>>

同步练习册答案